
Linear Local Vol Cheyette PDE.

Let the PDE i want to solve,

∂Vt

∂t
+

(

yt − κxt

)
∂Vt

∂xt
+

1

2
σ2(t, xt)

∂2Vt

∂x2t
+

(

σ2(t, xt)− 2κyt

)
∂Vt

∂yt
= rtVt

s.t V (T, xT , yT ) = φ(T, xT , yT ) (1)

where the local volatility is the one proposes by Piterbar & Andreasen’s book [Pit&And]

σ(t, xt) = at(bt + ctxt)

and the short rate has been denoted by

rt = xt + f(0, t)

being f(0, t) the instantaneous forward rate with maturity t.

We apply the change of variable as proposed in [Pit&And]

ut = yt − ȳt where ȳt = EQ [yt|F0]

So the PDE we solve for is

∂Vt

∂t
+ LxVt + LuVt = 0

s.t V (T, xT , yT ) = φ(T, xT , yT ) (2)

where

Lx =

(

ut + ȳt − κxt

)
∂

∂xt
+

1

2
σ2(t, xt)

∂2

∂x2t
− rt

Lu =

((

σ2(t, xt)− σ2(t, x0)

)

− 2κut

)

︸ ︷︷ ︸

µu(t,xt,yt)

∂

∂ut
(3)
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Operator Discretization and boundary conditions

We approximate the PDE in (4) by the following system of ODEs:

∂Vt

∂t
+AxVt +AuVt = 0

s.t V (T, xT , yT ) = φ(T, xT , yT ) (4)

where Ax and Au denotes the discrete differential operator for Lx and Lu respectively, for
{xj}j=0,...,N and {uj}k=0,...,M .

x-Discretization:

We discretize first and second derivatives in x direction with 3-point centered differences.
We can use an upwind scheme for the first derivative (depending on the value of the
diffusion term relative to the drift one, but this does not change results very much). We
assume that the second derivative goes to zero at both ends.

u-Discretization:

Two different approachs:

Upwind Scheme:

We approximate within the grid:

∂V

∂u

∣
∣
∣
∣
j,k

≈
Vj,k+1 − Vj,k

∆u

1{µu(xj ,uk)>0} +
Vj,k − Vj,k−1

∆u

1{µu(xj ,uk)<0} ∀ k = 1, . . . ,M − 1

At the boundaries:

∂V

∂u

∣
∣
∣
∣
j,0

=
Vj,1 − Vj,0

∆u

1{µu(xj ,u0)>0} +
Vj,0 − Vj,−1

∆u

1{µu(xj ,u0)<0}

where Vj,−1 is a value associated to a point that lies out of the grid. In order to express it
in terms of the values within the grid, we assume that the second derivative goes to zero
at the boundary. In the case of an uniform discretization,

∂2V

∂u2
= 0 ⇒ Vj,−1 = 2Vj,0 − Vj,1
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So at the boundary we eventually have,

∂V

∂u

∣
∣
∣
∣
j,0

=
Vj,1 − Vj,0

∆u

independent of the sign of the convection term.

Following the same steps for the other boundary,

∂V

∂u

∣
∣
∣
∣
j,M

=
Vj,M − Vj,M−1

∆u

Five Point stencil:

We approximate within the grid:

∂V

∂u

∣
∣
∣
∣
j,k

≈ αk,1Vj,k−2+αk,2Vj,k−1+αk,3Vj,k+αk,4Vj,k+1+αk,5Vj,k+2, ∀ k = 2, . . . ,M−2

For uniform grids,

αk,1 =
1

12

1

∆u

, αk,2 = −
2

3

1

∆u

, αk,3 = 0, αk,4 =
2

3

1

∆u

, αk,5 = −
1

12

1

∆u

At the lower boundary (k = 1),

∂V

∂u

∣
∣
∣
∣
j,1

= α1,1Vj,−1 + α1,2Vj,0 + α1,3Vj,1 + α1,4Vj,2 + α1,5Vj,3 (5)

Again, to get rid of the ghost point, we assume linear function at the boundary (assume
equidistant grid to ease notation),

∂2V

∂u2

∣
∣
∣
∣
j,0

= 0 ⇒ Vj,−1 = 2Vj,0 − Vj,1 (6)

So equation (5) becomes,

∂V

∂u

∣
∣
∣
∣
j,1

= (2α1,1 + α1,2)Vj,0 + (α1,3 − α1,1)Vj,1 + α1,4Vj,2 + α1,5Vj,3 (7)

At the lower boundary (k = 0),
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∂V

∂u

∣
∣
∣
∣
j,0

= α0,1Vj,−2 + α0,2Vj,−1 + α0,3Vj,0 + α0,4Vj,1 + α0,5Vj,2 (8)

Again, to eliminate the ghost points,

∂2V

∂u2

∣
∣
∣
∣
j,−1

= 0 ⇒ Vj,−2 = 2Vj,−1 − Vj,0 (9)

Substituting (9) and (6) into (8), we obtain

∂V

∂u

∣
∣
∣
∣
j,0

= Vj,0 (3α0,1 + 2α0,2 + α0,3) + Vj,1 (α0,4 − 2α0,1 − α0,2) + Vj,2 α0,5 (10)

Time evolution

To evolve the PDE in time we apply the Craig Sneyd ADI method:

[

1− θ∆tAx

]

U(t) =

[

1 + (1− θ)∆tAx +∆tAu

]

V (t+∆) (11)

[

1− θ∆tAu

]

V (t) = U(t)− θ∆tAuV (t+∆) (12)

where in the case of the five point stencil, system (12) is a penta diagonal one.
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