Chapter Monte Carlo Engine 101 using Domain Architectures and Boost C++ Libraries

2011-12-16 start
Version 0.72
Introduction and Objectives
In this chapter we examine the well-known problem of pricing a plain one-factor option using the Monte Carlo method. This problem is easy to understand and to program, for example in pseudocode (Clewlow 1998), VBA, C and finally in C++ using system decomposition techniques and design patterns (Duffy 2010). The single-paradigm approach taken leads to inflexible software systems and to this end we wish to take a new defined plan to analyse, design and implement software systems (and in particular a system for the Monte Carlo method). To this end, we bring together a number of methods, techniques and software tools that allow us to create maintainable, interoperable and adaptable software systems. We achieve these ends by using system decomposition methods, multi-paradigm design and Boost C++ libraries whenever possible:

. We model the current Monte Carlo application as a special case of a RAT (Resource Allocation and Tracking) domain architecture (Duffy 2004) which allows us to find the initial set of components and modules that cooperate to satisfy system needs. Each component is highly cohesive and it must be loosely coupled to other components.
. We explicitly model each component’s provides and requires interfaces. In particular, we require the delivered software system to implement an ADL (Architecture Definition Language, see Leavens 2000). Object-oriented technology has no provision for modelling requires interfaces and hence it is unsuitable as a means of implementing component interfaces. Instead, we employ the functional programming model to implement component interfaces. This ensures loose coupling between components. It also means that we can replace one component by another component having the same interface at run-time.
. We employ a combination of the procedural, object-oriented, generic and functional programming models to implement the current software system. System and user requirements determine which model is most suitable in which part of the design. We have already discussed this topic.
. We strive to use standardised C++ libraries rather than creating our own libraries. In particular, Boost and STL provide much of the functionality that is needed in the current application:

	. uBLAS library: vectors and matrices to model data structures.
	. Random library: creating random numbers (Mersenne Twister, Lagged Fibonacci).
. Higher-order function libraries such as Boost Function, Bind and Signals (Signals2). We also use C++ lambda functions in combination with STL algorithms.
	. Timer library: this allows us to report on elapsed computing time.

We now discuss the design and implementation of this system. You also can examine the code, run it and see how the parts fit together.
…
Conclusions and Summary
In this chapter we have designed and implemented a model problem from a design and multi-paradigm viewpoint. We have created a defined software process that formalises and externalises implicit assumptions and work practices in software development. It is possible in a second iteration of the project lifecycle to generalise the design the Monte Carlo system to multi-factor GBM and jump models. In a later chapter we shall show how to design a Finite Difference Engine using the same principles.

//

C++ project; used VS2010

. Source: TestMC.cpp, NormalGenerator.cpp
. Additional directories for .hpp and .lib files

