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In this paper we apply Cheyette’s Markov representation of the Heath–Jarrow–
Morton framework to the modeling of stochastic credit spreads. As an application
of this framework, the volatility of the credit spread process is modeled by con-
sidering the constant elasticity of variance approach of Ritchken and Sankara-
subramanian and the Andersen–Andreasen displaced approach. To examine the
practicability of this approach, we calibrate the model to market prices of credit
default swaptions. Thereby we use Monte Carlo simulation and the alternating
direction implicit finite-difference method.

1 INTRODUCTION

In recent years the credit derivatives market has grown significantly. Liquid markets of
credit default swaps have been developed, allowing the construction of an implied term
structure of default probabilities. In this paper we present a framework for the modeling
of the stochastic nature of the full term structure of the credit spreads. Our framework is
inspired by Heath, Jarrow and Morton (HJM) (see Heath et al (1992)), Cheyette (1994)
and Schönbucher (2000).

In their seminal paper, Heath, Jarrow and Morton choose the entire term structure of the
forward rates as their state variable and use the observed current forward rate curve as an
initial condition to derive an arbitrage-free framework for the stochastic evolution of the
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48 K. Natcheva-Acar et al

state variable, where the dynamics of the forward rates are fully specified through their
instantaneous volatility structures. Their general framework permits an arbitrary term
structure volatility and covariance of forward rates across maturities. However, the main
criticism of their framework is the non-Markovian character of the forward and short-
rate processes. By choosing the entire term structure of forward rates as a state variable,
their model can be viewed as a joint Markov process in an infinite number of forward
rates leading to an infinite-dimensional state space. Under this general framework, it
is not possible both to keep the no-arbitrage environment and to describe the evolution
of the term structure as a Markovian process by means of a finite number of state
variables. Therefore, since the dynamics of the short-rate process depend on its whole
history, plenty of practical difficulties arise in its numerical implementation, such as
non-recombining trees, costly Monte Carlo simulations, failure to use finite-difference
methods, etc.

In order to overcome the drawbacks of the HJM framework, Cheyette (1994) and
Ritchken and Sankarasubramanian (1995) offer a limiting form of the volatility of the
forward rate process while keeping the desired generality of the forward rate represen-
tation. Cheyette proves that it is possible to approximate a large class of HJM models
with an arbitrage-free Markov model in a finite number of state variables up to an arbi-
trary accuracy by limiting the class of volatility functions of the forward rate process.
Independently, Ritchken and Sankarasubramanian (RS) also identify the necessary and
sufficient condition for capturing the path dependence in the short-rate process by a
single additional condition. Further, Li et al (1995) offer and investigate the lattice con-
struction needed for the approximation of the short-rate process. In this paper, when
using the lattice method for pricing credit risk sensitive claims we shall apply a lattice
construction of a Li et al (1995) type.

The aim of this paper is to apply the Cheyette model to the modeling of credit risk
and to exploit the advantages of this application. Therefore we adapt the Cheyette model
and analyze its usability for two types of Cheyette processes for the example of credit
default swaptions. More precisely, we choose the instantaneous credit spread as the
state variable and model its stochastic nature by Cheyette-type diffusion processes.
Moreover, the stochastic volatility of the credit spread process is modeled by considering
the RS approach and the Andersen and Andreasen (2002) displaced (AA-DP) approach.
Since it is not possible to derive closed-form solutions (or even approximations) for the
credit default swaption prices under the Cheyette framework, we invoke Monte Carlo
simulations to price credit default swaptions within our model assumptions. Moreover,
in the case of RS-type volatility we are also able to implement a finite-difference method:
namely, the modified alternating direction implicit (ADI) method1 of Craig and Sneyd
(1988).

1 In Appendix C we present the modified ADI method to solve the corresponding two-dimensional
partial differential equation.
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Modeling credit spreads with the Cheyette model 49

Other approaches to the pricing of credit default swaptions can be found, for example,

in Brigo and Alfonsi (2005), Schönbucher (2004), Hull and White (2003) and Krekel

and Wenzel (2006).

The rest of the paper is structured as follows. In the following section we will intro-

duce the notation that we will use throughout the paper and also detail the basic facts that

our framework relies on. In Section 3, the dynamics of the credit spread process under

the pricing measureQ and specifications of the dynamics of the stochastic volatility are

introduced. In Section 4, we modify the forward survival measure technique for our pric-

ing purposes and introduce the notion of the survival measure, where the numeraire is no

longer the defaultable forward rate as in Schönbucher (2000) but is in fact the default-

able money market account. Section 5 covers the valuation of credit default swaptions

in our framework. Section 6 contains the calibration results for credit default swaptions.

Finally, in Section 7, we draw our conclusions.

2 NOTATION AND MODEL SETUP

Let .˝;F ; .Ft /t>0;Q/ be our filtered probability space, where Q stands for a risk-

neutral probability measure. The default time on the filtered probability space is denoted

by � and it is a stopping time. In the filtration F WD .Ft /t>0, there are two information

flows: one coming from the diffusion and the other from the default event.

First, we introduce a right continuous process H by setting H.t/ D 1f�6tg and we

denote by H the associated filtration: Ht D �.Hu W u 6 t /. Then, let F
W be the filtration

generated by the Q-Brownian motion W , ie, F W
t D �.Wu W u 6 t /. In what follows,

we set the filtration of our probability space to be F D H _ F
W . We assume that all

filtrations satisfy the usual conditions of right continuity and completeness (for more

details see Jacod and Shiryaev (1988)) and that the time horizon is large but finite.

We work directly with the risk-neutral probability measureQ, rather than starting with

the subjective measure P , which does not take risk premia into account and therefore

cannot be used for pricing. The main tool for changing between some subjective measure

P and a risk-neutral measure Q in the credit risk models is given in Appendix B. In

addition to the usual drift change in the Brownian motion, this change of measure implies

a significantly higher default intensity hQ underQ, which reflects the high risk premium

on default risk. In our notation, we drop theQ subscripts and superscripts while working

under the measure Q. The intensity of the default time � is the non-negative adapted

process h such that:

M.t/ D H.t/ �

Z t^�

0

h.u/ du

is a Q-martingale.

The following definition introduces the basic rates and prices that are used in the

framework.
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Definition 2.1

1) At any time t , there are default-free and defaultable zero-coupon bonds of all
maturities T > t . Their prices at time t are denoted by:2

B.t; T /; I.t/ NB.t; T /

where I.t/ WD 1 �H.t/.3

2) The default risk factor at time t for maturity T is:

D.t; T / D
NB.t; T /

B.t; T /

3) The instantaneous default-free forward rate at time t for date T is defined as:

f .t; T / D �
@

@T
ln.B.t; T //

4) The instantaneous defaultable forward rate at time t for date T is defined as:

Nf .t; T / D �
@

@T
ln. NB.t; T //

5) The instantaneous default-free short rate and defaultable short rate at time t are
defined by:

r.t/ WD f .t; t/; Nr.t/ WD Nf .t; t/

6) The instantaneous forward credit spread at time t for date T is defined as:

S.t; T / D Nf .t; T / � f .t; T / D �
@

@T
ln.D.t; T //

7) The instantaneous credit spread at time t is defined as:

s.t/ D S.t; t/ D Nr.t/ � r.t/ (1)

8) The default-free money market account and the defaultable money market account
are defined, respectively, as follows:

M.t/ D exp

�Z t

0

r.s/ ds

�
; I.t/ NM.t/ D I.t/ exp

�Z t

0

Nr.s/ ds

�

2 In our notation, the overbar implies that the quantity is subject to default risk.
3 Therefore, these defaultable zero-coupon bonds have zero recovery in default. We assume zero
recovery throughout the whole paper. NB.t; T / need not jump to zero at default because I.t/ already
does so.
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3 MODELING THE CREDIT SPREAD

3.1 Introduction

In their celebrated articles, Cheyette (1994) and Ritchken and Sankarasubramanian
(1995) independently introduced the Markov representation of the forward rate by limit-
ing the forward credit spread volatility term structure to a specific form. More precisely,
they used the HJM dynamics of the forward rate:

df .t; T / D �f .t; T / dt C �f .t; T / dW1.t/ (2)

and specified the volatility of the forward rate by:

�f .t; T / D
f̨ .T /

f̨ .t/
�f .t; t/ (3)

where f̨ .t/ D e��f t , with a constant �f and where �f .t; t/ is some adapted stochastic
process. The default-free short-rate Q-dynamics is then given by:

r.t/ D X.t/C f .0; t/

dX.t/ D .��f X.t/C ˚.t// dt C �f .t; t/ dW1.t/; X.0/ D 0

)
(4)

where ˚.t/ is the accumulated variance of the forward rate up to time t :

˚.t/ D

Z t

0

�2f .u; t/ du

which can also be written as a solution to the following general first-order linear ordinary
differential equation:

d˚.t/ D �f .t; t/
2 dt � 2�f ˚.t/ dt; ˚.0/ D 0

3.2 The Markovianity of the credit spread process

Inspired by the above result and because the Markovianity of a credit spread process is a
desired feature for pricing credit spread sensitive products, we model the instantaneous
credit spread by using the Cheyette (1994) Markov representation of the HJM model.

Let the evolution of the forward credit spread for every maturity T be given by a
diffusion process of the form:

dS.t; T / D �S.t; T / dt C �S.t; T / dW2.t/ (5)

where �S.t; T / and �S.t; T / are the drift and volatility parameters and where W2.t/
is a Brownian motion under Q. The no-arbitrage drift condition for the forward credit
spread is proved by Schönbucher (1998) to have the following form:

�S.t; T / D �S.t; T /

Z T

t

�f .t; u/ du

C �f .t; T /

Z T

t

�S.t; u/ duC �S.t; T /

Z T

t

�S.t; u/ du (6)
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52 K. Natcheva-Acar et al

where �f .u; v/ is the volatility of the HJM forward rate f .u; v/. By assuming the
independence of S.t; T1/ and f .t; T2/ for all t 6 T1, t 6 T2, the no-arbitrage condition
(6) takes the form:

�S.t; T / D �S.t; T /

Z T

t

�S.t; u/ du (7)

In the following proposition, we shall state the Markovianity of the credit spread
process.

Proposition 3.1 (Markov representation of the credit spread process)

1) Assume that the no-arbitrage drift condition is given by Equation (7), ie, that the

short rate and the credit spread are uncorrelated. Let the volatility of the forward

credit spread have the following form:

�S.t; T / D
˛S.T /

˛S.t/
�S.t; t/ (8)

where ˛S.t/ D e��s t , with a constant �s , and where �S.t; t/ is some adapted

stochastic process. The instantaneous credit spread process can then be repre-

sented as a two-dimensional Markov process .Xs.t/; ˚s.t//, given as follows:

s.t/ D Xs.t/C S.0; t/

dXs.t/ D .��sXs.t/C ˚s.t// dt C �S.t; t/ dW2.t/; Xs.0/ D 0

)
(9)

where ˚s.t/ is the accumulated variance for the forward credit spread up to time

t , ie:

˚s.t/ D

Z t

0

�2S .u; t/ du (10)

It can be written in differential form as:

d˚s.t/ D .�
2
S .t; t/ � 2�s˚s.t// dt; ˚s.0/ D 0

2) Assume that the no-arbitrage drift condition is given by Equation (6), ie, that

the short rate and the credit spread are correlated and that the volatility of the

short rate and the volatility of the forward credit spread have the forms given in

Equations (3) and (8), respectively. The instantaneous credit spread process can

then be represented as a four-dimensional Markov process .Xs.t/; ˚s.t/; ˚sf .t/;

�sf .t//, given as follows:

s.t/D Xs.t/C S.0; t/

dXs.t/D

�
� �sXs.t/C˚s.t/

C

�
2�

�f � �s

�s

�
˚sf .t/�

�f � �s

e��s t
�sf .t/

�
dt C �S.t; t/ dW2.t/

9>>>>>=
>>>>>;

(11)
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where ˚s.t/ is given by Equation (10) and where ˚sf .t/ and �sf .t/ are defined

as follows:

˚sf .t/ WD

Z t

0

�S.u; t/�f .u; t/ du

�sf .t/ WD �
1

�S

Z t

0

�S.u; t/�f .u; t/e
��su du

Proof See Appendix A. �

Let us note that �S.t; t/ and �s appear to be the volatility and the mean-reversion rate of
the credit spread process, respectively. Further, under the assumption of independence,
the stochastic differential equation (11) reduces to the stochastic differential equation
(9). Throughout the rest of the paper, we assume that the short-rate and the credit spread
processes are independent.

The following corollaries are direct consequences of Proposition 3.1 and postulate the
Markov representation of the forward credit spread and the formula for the default risk
factor (see Cheyette (1994)).

Corollary 3.2 The forward credit spread is given as follows:

S.t; T / D S.0; T /C e��s.T�t/Xs.t/C e��s.T�t/ˇS.t; T /˚s.t/

where:

ˇS.t; T / D

Z T

t

e��s.u�t/ du

Corollary 3.3 The default risk factor at time t with maturity T is given as follows:

D.t; T / D
D.0; T /

D.0; t/
exp.�0:5ˇ2S.t; T /˚s.t/ � ˇS.t; T /Xs.t//

3.3 The volatility dynamics of the credit spread process

As we have already stated under the independence assumption of forward rates and
forward credit spreads, the resulting model is Markovian in only two state variables:
Xs.t/ and ˚s.t/. The first state variable can be interpreted as a credit spread curve
factor, with instantaneous credit spread given by:

s.t/ D Xs.t/C S.0; t/

The second state variable ˚s.t/ can be seen as a convexity correction term, ensuring
that the model is arbitrage-free. The model reduces to a single state variable one only
when the credit spread volatility, �S.t; t/, is deterministic. In this paper we consider
the stochastic nature of the volatility, first by modeling it as a function of the credit
spread process, namely the RS approach, and second by modeling it as a function of a
Heston-type stochastic volatility process, namely the AA-DP approach.
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The RS approach:

�S.t; t/ D �.t/s.t/
m (12)

where �.t/ is a deterministic time-dependent function and m > 0. In fact, expres-
sion (12) is a constant elasticity of variance approach. The elasticity parameter m
must be chosen such that the process s.t/ is always positive. For m D 0:5, Feller’s
criterion, 2�� > �2, ensures that the process is positive, if started from a positive
value. For them D 1 case, we derive a sufficient condition for the credit spread to be
positive in Appendix D.4

The AA-DP approach: the approach is essentially a shifted Heston stochastic volatility
model:

�S.t; t/ D
p
�.t/Œm�.t/C .1 �m/�.0/� (13)

where �.t/ is the (credit) swap rate,5 which will be defined in Section 5, and �.t/ is
a stochastic process, whose dynamics are given by the following CIR process:

d�.t/ D �Œ	 � �.t/� dt C "
p
�.t/ dW3.t/ (14)

where m, �, 	 and " are constants6 and W3.t/ is a standard Q-Brownian motion. It
is assumed that W1.t/, W2.t/ and W3.t/ are mutually independent.

4 CHANGE OF MEASURE

In this section, we will adapt the forward survival measure technique of Schönbucher
(2000) to (instantaneous) probability measures and introduce the notion of the survival
measure.

4.1 The survival measure

Let us consider a contingent claim paying a random payout at time T if the obligor is
still alive at time T . The payout can then be written as XI.T / and the time-t price of
the contingent claim under the equivalent martingale measure is given as follows:

EQ

�
exp

�
�

Z T

t

r.u/ du

�
XI.T /

ˇ̌̌
ˇ Ft

�
(15)

4 Thanks to Holger Kraft for useful discussion on this.
5 Note that �S.t; t/ is a function of some swap rate �.t/ that is specific to the instrument that is
priced (see Andersen and Andreasen (2002)). The specification of �.t/ in the pricing issue of credit
default swaptions is the underlying forward swap rate.
6 The effects of the parameters on the volatility smile are explained in Andreasen (2003). The slope
of the smile is controlled by the m parameter. The volatility of the volatility process, ", controls
the curvature of the smile. Decreasing the mean-reversion rate decreases the rate at which the
curvature of the smile decays with expiry.
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We introduce a new measure NQ, namely the survival measure, which we use to price
defaultable contingent claims. The numeraire of this new measure is the defaultable
money market account, which was introduced in Definition 2.1.

The survival measure is defined by its Radon–Nikodym density:

L.t/ WD
d NQ

dQ

ˇ̌̌
ˇ
Ft

D
NM.t/

NM.0/

M.0/

M.t/
I.t/ D exp

�Z t

0

s.u/ du

�
I.t/ (16)

The Radon–Nikodym density L.t/ D NM.t/I.t/=M.t/ is a Q-martingale, since it can
be seen as a (tradable) security NM.t/I.t/ discounted with the default-free money market
account. Note that NQ is not an equivalent martingale measure toQ since it attaches zero
probability to events after default. It is, however, absolutely continuous toQ, and hence
Girsanov’s theorem is applicable.

The drift change coming from the measure change is equal to zero, since the numeraire
of Q and NQ are the money market account and the defaultable money market account,
respectively, and have locally deterministic returns, ie, zero diffusion coefficients.

The dynamics of the credit spread process under the survival measure NQ is then given
as follows:

s.t/ D Xs.t/C S.0; t/

dXs.t/ D .��sXs.t/C ˚s.t// dt C �S.t; t/ d NW .t/; Xs.0/ D 0

)
(17)

Changing the measure by using Equation (16), the time-t price of the above contingent
claim can be rewritten as follows:

EQ

�
exp

�
�

Z T

t

r.u/ du

�
XI.T /

ˇ̌̌
ˇ Ft

�
D E NQ

�
exp

�
�

Z T

t

Nr.u/ du

�
X

ˇ̌̌
ˇ Ft

�
(18)

where Nr.t/ D r.t/C s.t/. Notice that the formula of the default factor D.t; T /, given
in Corollary 3.3, remains unchanged under the survival measure NQ.

5 THE VALUATION OF CREDIT DEFAULT SWAPTIONS

In this section we will introduce the valuation of a credit default swaption (CDSwaption)
into our setup. A CDSwaption is an option written on a (forward) credit default swap
(CDS).

Definition 5.1 A forward CDS, starting at time Tk , consists of two payment legs:

1) the fixed (or premium) leg, paying �ıi at TiC1 for all i D k; : : : ; n�1 if no default
happened before TiC1; and

2) the floating (or protection) leg, paying .1�R/ at TiC1 for all i D k; : : : ; n� 1 if
a default happens between Ti and TiC1.

As before, � is the premium payment rate (swap rate) and R is the recovery rate.
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The value at time 0 of the fixed leg of a forward CDS is therefore:

Vfixed.0/ D �

n�1X
iDk

ıiE NQ

�
exp

�
�

Z TiC1

0

Nr.s/ ds

��
D �

n�1X
iDk

ıi NB.0; TiC1/

Therefore, the value of the floating leg of the forward CDS is:

Vfloating.0/ D .1 �R/

n�1X
iDk

E NQ

�
exp

�
�

Z Ti

0

Nr.s/ ds

�

�

�
B.Ti ; TiC1/ � exp

�
�

Z TiC1

Ti

Nr.s/ ds

���

The forward credit swap rate �k;n.0/, which makes the value of the fixed leg equal the
value of the floating leg, is given as:

�k;n.0/ D .1 �R/

Pn�1
iDk ŒE NQ.exp.�

R Ti
0
Nr.u/ du/B.Ti ; TiC1// � NB.0; TiC1/�Pn�1
iDk ıi

NB.0; TiC1/

In general, for t 6 Tk :

�k;n.t/ D .1 �R/

Pn�1
iDk ŒE NQ.exp.�

R Ti
t
Nr.u/ du/B.Ti ; TiC1/ j Ft / � NB.t; TiC1/�Pn�1
iDk ıi

NB.t; TiC1/
(19)

Remark 5.2 Notice that in the case of the deterministic default-free short-rate process
r.t/, we would have the fair forward credit swap rate of the simplified form:

�k;n.t/ D .1 �R/

Pn�1
iDk ŒD.t; Ti /B.t; TiC1/ �

NB.t; TiC1/�Pn�1
iDk ıi

NB.t; TiC1/
(20)

Definition 5.3 A payer (receiver) CDSwaption with maturity Tk and strike � is a call
(put) option on a k-forward CDS. It gives the owner of this option at time Tk the right
to enter a long (short) position in a credit default swap at the predefined default swap
rate if there has been no default event until time Tk .

The payout function of the payer CDSwaption at time Tk is:

Payoff D .Vfloating.Tk/ � Vfixed.Tk//
C D

n�1X
iDk

NB.Tk ; TiC1/.�k;n.Tk/ � �/
C

Hence, the price of the payer CDSwaption at time 0 is:

Vpayer.0/ D E NQ

�
exp

�
�

Z Tk

0

Nr.s/ ds

� n�1X
iDk

NB.Tk ; TiC1/.�k;n.Tk/ � �/
C

�
(21)
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TABLE 1 iTRAXX S10 IG five-year CDSwaption market quotes (Ref: 135bps).

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask MidVol (%) Bid Ask MidVol (%)

80 272 280 114.0 305 317 110.9
90 237 245 114.0 275 287 110.9

100 204 212 112.8 249 261 110.4
110 175 183 112.2 224 236 110.1
120 149 157 112.0 203 215 110.0
130 127 136 112.2 184 196 110.1
140 109 117 112.6 167 179 110.3
150 94 102 113.2 153 165 110.5
160 81 89 114.1 139 151 110.9
170 69 77 114.1 129 139 110.9

TABLE 2 iTRAXX S10 Xover five-year CDSwaption market quotes (Ref: 735bps).

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask MidVol (%) Bid Ask MidVol (%)

600 634 644 67.5 801 815 65.5
625 567 577 67.5 741 755 65.5
650 507 517 67.5 685 699 65.5
675 451 461 67.6 633 647 65.5
700 402 412 67.7 585 599 65.6
725 357 367 67.9 541 555 65.7
750 317 327 68.1 500 514 65.8
775 282 292 63.3 463 477 65.9
800 250 260 68.6 429 443 66.0
825 222 232 68.6 398 412 66.0

6 NUMERICAL RESULTS AND CALIBRATION

In this section we calibrate the parameters of the credit spread process s.t/ to credit
default swaption market prices written on the iTRAXX IG and Xover indexes.7 The
market quotes are stated in Tables 1 and 2. For the purposes of calibration we assume
a deterministic default-free short rate. We assume that the initial term structures of

7 Note that credit default swaptions on indexes are not embedded with the knock-out feature, which
means that the buyer of a payer option has default protection prior to option expiry. We use the
market standard method to account for this feature, ie, adjusting the forward spread by the quotient
of the value of the front-end protection and the forward DV01.
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defaultable forward rates are flat.8 We present the calibration results by considering the

Q-dynamics of the credit spread, given by Equation (9), where the term structure of

volatility is modeled by the RS and AA-DP approaches. In the RS case, we choose

m D 1, ie, �S.t; t/ D �s.t/, where � is constant. Thus, the parameters that have to be

calibrated are the volatility, � , and the mean reversion, �s . To calibrate the parameters we

have used the finite-difference method. For the derivation of the corresponding partial

differential equation and for the corresponding finite-difference method, seeAppendix C.

In the AA-DP case, we choose �.t/ to be the underlying forward swap rate9 of the

CDSwaption contract. The parameters that have to be calibrated are the volatility, �s ,

the mean reversion of the credit spread process, �s , the volatility, 
, the mean reversion

of the stochastic volatility process, �, and the displacement coefficient, m. Due to the

complexity of this model,10 we implemented only the Monte Carlo simulation. For the

numerical calibration, we have further set the number of time steps to 100 and the number

of simulations to 20,000.

As the calibration target function we used the root mean square error (RMSE):

RMSE. Ep/ D

vuut1

n

nX
iD1

.Osi � si . Ep//2

where the Osi are the mid market spreads, the si . Ep/ are the model spreads and Ep is the

parameter vector. So our objective is to find:

Epo D arg min.RMSE. Ep//

The market quotes in Tables 1 and 2 are the market prices of payer swaptions from

October 17, 2008 for an iTRAXX S10 IG five-year CDS and an iTRAXX S10 Xover

five-year CDS. The maturity date of iTRAXX S10 five-year CDSs is December 20,

2013. All market prices are quoted in basis points. The “MidVol” column shows the

Black volatilities that match mid market quotes (the mean of the bid and ask quotes).

Note that the longer the maturity and the wider the underlying credit spread, the wider

the bid–ask spreads are. The option maturities are December 20, 2008 and March 20,

2009, respectively. For each maturity we have 10 data points, giving a total of 20 data

points in all. We calibrate the market data for both maturities with a common set of

model parameters. For root solving we used the solver embedded in Excel, which uses

a conjugate gradient method.

8 This is the common market assumption, when credit default swaptions are quoted.
9 Note that this swap rate covers 20 tenor dates, each of which has a length of a quarter of a year.
10 What we mean by the “complexity” of the model is that for each time step of the numerical
procedure we have to calculate the corresponding forward swap rate in order to simulate the
stochastic volatility of the credit spread, which does not allow a fine-grid Monte Carlo simulation.

The Journal of Credit Risk Volume 5/Number 1, Spring 2009



Modeling credit spreads with the Cheyette model 59

6.1 Calibration results for the Ritchken–Sankarasubramanian
model

In Tables 3 and 4 we present the calibration results of the RS model for the payer
swaptions market data from Tables 1 and 2.

The calibration results for RS are very satisfactory. For iTRAXX IG we got an RMSE
of 3.45 and for iTRAXX Xover we got 7.67. The iTRAXX IG model quotes are located
within the bid–ask spreads except for two exceptions; for Xover we have five exceptions.
The calculation time for each option price is roughly one second. The optimal model
parameters for iTRAXX IG are � D 0:94 and �s D �0:1; for iTRAXX Xover we
calibrated as optimal parameters � D 1:39 and �s D 0:39. For comparison, the quoted
Black–Scholes volatilities for iTRAXX IG are approximately 110% and for iTRAXX
Xover they are approximately 67%. That the volatility for iTRAXX IG is higher than
it is for Xover can be explained by the fact that the spread proportion accounting for
liquidity risk or hedge risk is greater in iTRAXX IG spreads. Therefore, iTraxx IG
spreads are more volatile. Overall, the good performance can be explained by the fact
that the Black volatility skew is almost flat and the Black formula is based on the
assumption that the forward CDS spread is driven by a constant elasticity of variance
(CEV) process withm D 1 (or geometric Brownian motion). In the RS model we made
the assumption that the instantaneous credit spread is also driven by a CEV process with
m D 1.

We calculated the surface of the target function (since the RS model has just two
parameters). We observed that the volatility � and the mean reversion �s have a reversed
effect on the pricing function. For instance, if we subtract 4% from the optimal � for
iTRAXX IG and add 1.5% to the optimal �, we can get similar good calibration results.
So the the error surface of iTRAXX IG with respect to � and �s has a “valley” located
diagonal to the axes with the deepest point at � D 0:94 and �s D �0:1.

6.2 Calibration results for the Andersen–Andreasen displaced
model

In Tables 5 and 6 we state the calibration results for the AA-DP model. The calculation
time for one price was around 10 seconds. Despite trying much harder for good cali-
bration results here than we did for the RS model, the results are worse. The reasons
for this are threefold: first, using Monte Carlo makes the calibration slow and unstable;
second, we have to deal with six parameters, so the calibration is generally more difficult
(counteracting parameters, local minima); third, the spread dynamics does not seem to
reflect the market prices.

7 CONCLUSION

In this paper we laid down the theoretical fundamentals for the modeling of credit spreads
in the HJM framework, where the volatility is specified to be of Cheyette type. The
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TABLE 3 iTRAXX S10 IG five-year payer swaption RS calibration results.

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask Model Bid Ask Model

80 272 280 273.65 305 317 302.14
90 237 245 240.38 275 287 276.61

100 204 212 209.89 249 261 252.64
110 175 183 182.31 224 236 231.38
120 149 157 157.61 203 215 211.58
130 127 136 135.69 184 196 193.18
140 109 117 116.39 167 179 176.98
150 94 102 99.54 153 165 161.85
160 81 89 84.92 139 151 147.93
170 69 77 72.31 129 139 135.66

Optimal � D 0.94, �s D �0.10
parameters

RMSE 3.45

TABLE 4 iTRAXX S10 Xover five-year payer swaption RS calibration results.

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask Model Bid Ask Model

600 634 644 662.10 801 815 816.04
625 567 577 589.53 741 755 750.37
650 507 517 523.47 685 699 692.37
675 451 461 463.94 633 647 637.66
700 402 412 410.70 585 599 590.11
725 357 367 363.38 541 555 545.58
750 317 327 321.46 500 514 505.88
775 282 292 284.40 463 477 469.59
800 250 260 251.69 429 443 436.46
825 222 232 222.88 398 412 406.92

Optimal � D 1.39, �s D 0.39
parameters

RMSE 7.67

motivation for this undertaking was to transfer the benefits of the Cheyette model, which

are mainly its Markovian nature and the existence of closed-form solutions for bond

prices, to the modeling of credit risk. We also examined the usability of this approach.
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TABLE 5 iTRAXX S10 IG five-year payer swaption AA-DP calibration results.

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask Model Bid Ask Model

80 272 280 272.36 305 317 303.24
90 237 245 240.10 275 287 276.67

100 204 212 205.56 249 261 247.77
110 175 183 181.20 224 236 231.14
120 149 157 154.92 203 215 210.68
130 127 136 133.28 184 196 187.52
140 109 117 115.54 167 179 172.54
150 94 102 99.52 153 165 158.75
160 81 89 82.43 139 151 135.61
170 69 77 67.87 129 139 125.66

X.t/ �s D 0.0, m D 0.80
�.t/ �.0/ D 1.15, � D �0.05, 	 D 1.15, " D 0.6

RMSE 4.20

TABLE 6 iTRAXX S10 Xover five-year payer swaption AA-DP calibration results.

Maturity December 20, 2008 March 20, 2009

Strike Bid Ask Model Bid Ask Model

600 634 644 670.13 801 815 826.16
625 567 577 593.32 741 755 767.50
650 507 517 510.25 685 699 705.80
675 451 461 456.80 633 647 640.44
700 402 412 395.16 585 599 589.24
725 357 367 339.88 541 555 541.87
750 317 327 296.04 500 514 485.80
775 282 292 249.73 463 477 438.17
800 250 260 206.29 429 443 393.85
825 222 232 171.33 398 412 359.25

X.t/ �s D 0.23, m D 0.80
�.t/ �.0/ D 1.04, � D 0.15, 	 D 0.79, " D 0.69

RMSE 28.08

For this purpose we have chosen market prices of instruments, which clearly depend

on the credit spread dynamics, namely credit default swaptions, and calibrated them

successfully with our model.
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For the calibration we considered first RS-type volatility. We calibrated the payer
swaption market prices to the model prices, obtained from the finite-difference ADI
method, by changing the volatility parameter � and the mean reversion parameter �s .
The calibration time and the results are very satisfactory: we could minimize the root
mean squared error to 3.45 basis points for iTraxx IG and 7.67 basis points for iTraxx
Xover. Note that the obtained volatility parameter is very high but the actual volatility
is �s.t/, which is reasonable at each time step.

Second, the volatility structure of AA-DP has been considered and further numerical
results, based on Monte Carlo simulation, have been obtained. The implementation of
a finite-difference method or a tree method was not possible in this case. Therefore, we
had to rely on the Monte Carlo simulation for the calibration results. The calibration
time and the results were less satisfactory: an RMSE of 4.20 basis points for iTraxx IG
and an RMSE of 28.08 basis points for iTraxx Xover.

We applied the Cheyette model to the credit world. Initial tests with credit default
swaptions and RS-type volatility were very promising. In our opinion, it therefore seems
beneficial to undertake further research in this direction.

APPENDIX A: PROOF OF PROPOSITION 3.1

For the first part of the proof, we refer to Ritchken and Sankarasubramanian (1995).

The proof of the second part By using the no-arbitrage drift condition (6), the
forward credit spread can be represented as follows:

S.t; T / D S.0; T /C

Z t

0

�S.u; T /

Z T

u

�f .u; v/ dv du

C

Z t

0

�f .u; T /

Z T

u

�S.u; v/ dv du

C

Z t

0

�S.u; T /

Z T

u

�S.u; v/ dv du

C

Z t

0

�S.u; T / dW.u/ (A.1)

Recall that the volatilities of the forward rates have the following separable form:

�i .t; T / D
˛i .T /

˛i .t/
�i .t; t/

where i D ff;Sg. Let us define dAi .t/ WD ˛i .t/ dt . Equation (A.1) then becomes:

S.t; T / D S.0; T /C

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
˛S.T /.Af .T / � Af .u// du

C

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
f̨ .T /.AS.T / � AS.u// du

C

Z t

0

�2S .u; u/

˛2S.u/
˛S.T /.AS.T / � AS.u// du

C

Z t

0

�S.u; u/

˛S.u/
˛S.T / dW.u/
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Therefore, the credit spread process is obtained as follows:

s.t/ WD S.t; t/ D S.0; t/C I.t/C

Z t

0

�S.u; u/

˛S.u/
˛S.t/ dW.u/ (A.2)

where:

I.t/ D

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
˛S.t/.Af .t/ � Af .u// du

C

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
f̨ .t/.AS.t/ � AS.u// du

C

Z t

0

�2S .u; u/

˛2S.u/
˛S.t/.AS.t/ � AS.u// du

By rearranging the terms, we obtain:Z t

0

�S.u; u/

˛S.u/
dW.u/ D

s.t/ � S.0; t/

˛S.t/
�

1

˛S.t/
I.t/ (A.3)

By differentiating I.t/ we obtain:

I 0.t/ D 2˚sf .t/C ˚s.t/C ˛
0
S.t/

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
.Af .t/ � Af .u// du

C ˛0f .t/

Z t

0

�S.u; u/�f .u; u/

˛S.u/ f̨ .u/
.AS.t/ � AS.u// du

C ˛0S.t/

Z t

0

�2S .u; u/

˛2S.u/
.AS.t/ � AS.u// du (A.4)

From Equation (A.2) one can derive:

ds.t/ D .S 0.0; t/C I 0.t// dt C

�
˛0S.t/

Z t

0

�S.u; u/

˛S.u/
dW.u/

�
dt C �S.t; t/ dW.t/

As a consequence, by substituting Equations (A.3) and (A.4) into the above equation
and arranging the terms we obtain the required result. �

APPENDIX B: CHANGE OF MEASURE

Theorem B 1 Assume that the default process has an intensity h.t/. Let ˛.t/ be a
predictable process and let �.t/ be a strictly positive predictable process with:Z t

0

˛.s/2 ds <1;
Z t

0

j�.s/ � 1j ds <1

for finite t . Define the process L by L.0/ D 1 and:

dL.t/

L.t�/
D ˛.t/ dW.t/C .�.t/ � 1/ dN.t/

Assume that E.L.t// <1 for finite t .
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There is then a probability measure Q equivalent to P with:

dQ.t/ D L.t/ dP.t/

such that:

dW Q.t/ D dW.t/ � ˛.t/ dt; hQ.t/ D �.t/h.t/

defines W Q as a Q-Brownian motion and hQ as the intensity of the default indicator

process under Q. Furthermore, every probability measure that is equivalent to P can

be represented in the way given above.

Proof See Jacod and Shiryaev (1988, Sections III.3 and III.5). �

APPENDIX C: ON THE NUMERICAL SOLUTION OF THE
CHEYETTE MODEL WITH RS-TYPE VOLATILITY

In this section we consider the diffusion modeling of credit spread processes with RS-
type volatility and we introduce contingent-claim pricing by solving the corresponding
partial differential equation with the modified ADI scheme of Craig and Sneyd (1988).

Let us first derive the pricing partial differential equation. Under the survival measure,
NQ, the fair price V.�/ of some contingent claim with payout F.Xs.T /; ˚s.T // is given

by:

V.t; Xs.t/; ˚s.t// D E NQ

�
exp

�
�

Z T

t

Nr.s/ ds

�
F.Xs.T /; ˚s.T //

ˇ̌̌
ˇ Ft

�
Due to Feynman–Kac this corresponds to the solution of:

@V

@t
CDxV CD˚V D 0

V.T;Xs.T /; ˚s.T // D F.Xs.T /; ˚s.T //

9=
; (C.1)

with:

Dx D �
1
2
Nr C .˚s.t/ � �sXs.t//

@

@x
C 1

2
�2S .t; t/

@2

@x2

D˚ D �
1
2
Nr C .�2S .t; t/ � 2�s˚s.t//

@

@˚s

For simplicity we omitted the arguments of V D V.t; Xs.t/; ˚s.t// in Equation (C.1).
We assume that the credit spread process has RS-type volatility, ie, �2S .t; t/ D
�.t/.Xs.t/CS.0; t//

m, where �.t/ is a deterministic function andm > 0. To solve this
two-dimensional11 problem, we used the modified alternating direction implicit method
of Craig and Sneyd (1988). In what follows we denote by ukij the finite-difference solu-
tion at the note point .k4t; i4xCx0; j4yCy0/, where i D 0; : : : ; Nx , j D 0; : : : ; Ny

11 Note that if we consider the AA-DP type volatility, we obtain a three-dimensional problem.
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and k D 0; : : : ; Nt . For simplicity of notation we switched from ˚s to y. We denote by
Dx andDy the finite-difference versions of the operators Dx and D˚ . We will perform
our calculation for y with five-point discretization:

Dxu
k
ij D �

1
2
rukij C .y � �sx/

ukiC1j � u
k
i�1j

24x
C 1

2
�2S
ukiC1j � 2u

k
ij C u

k
i�1j

4x2
(C.2)

Dyu
k
ij D �

1
2
rukij C .�

2
S � 2�sy/

1

4y
Œ� 1

12
ukijC2 C

2
3
ukijC1 �

2
3
ukij�1 C

1
12
ukij�2�

(C.3)

The basic scheme we consider can be written in the following form:

Auk D .AC B/ukC1 (C.4)

where:

A D .1 � �4tDx/.1 � �4tDy/

B D 4t .Dx CDy/

and � 2 Œ0; 1�. Note that this is equivalent to:

�.ukC1 � uk/

4t
� .Dx CDy/u

kC1 D �.�Dx �Dy C �4tDxDy/.u
kC1 � uk/

Note that for � D 0 we have a fully explicit scheme and for � D 1 a fully implicit
scheme. Craig and Sneyd (1988) suggest using � D 0:5 and solving Equation (C.4)
iteratively in the following way:

.1 � �4tDx/v
k D Œ.1 � �4tDx/C4tDx C4tDy �u

kC1 (C.5)

.1 � �4tDy/u
k D vk � �4tDyu

kC1 (C.6)

A.1 First step

In the following we try to make the calculations of Equation (C.5) as precise as possible.
By defining:

mkij WD Œ.1 � �4tDx/C4tDx C4tDy �u
kC1
ij

D ukC1ij C4t .1 � �/

�
� 1
2
NrukC1ij C .y � �sx/

ukC1iC1j � u
kC1
i�1j

24x

C 1
2
�2S
ukC1iC1j � 2u

kC1
ij C ukC1i�1j

4x2

�

C4t

�
� 1
2
NrukC1ij

C .�2S � 2�sy/
1

4y
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ukC1ijC2 C

2
3
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2
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1
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�
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Equation (C.5) can be rewritten as:

˛ij v
k
i�1j C ˇij v

k
ij C �ij v

k
iC1j D m

k
ij

where:

˛ij D �4t

�
.y � �sx/

24x
�

�2S
24x2

�

ˇij D

�
1C �4t

�
�2S
4x2

C 1
2
Nr

��

�ij D �4t

�
�
.y � �sx/

24x
�

�2S
24x2

�

This equation holds for all i D 1; : : : ; Nx � 1, j D 0; : : : ; Ny and k D 0; : : : ; Nt .
Therefore, we obtain a tridiagonal equation system. Hence we have for all j D
1; : : : ; Ny � 1 the following:

Mk
�jv

k
�j D m

k
�j (C.7)

whereMk
�j is equal to:

2
666666666664

.2˛1j Cˇ1j / .�1j � ˛1j / 0 � � � 0

˛2j ˇ2j �2j 0 � � � 0

0 ˛3j ˇ3j �3j 0
:::

::: 0
: : :

: : :
: : : 0

0 � � � 0 ˛N�x �1j ˇN�x �1j �N�x �1j

0 � � � 0 .˛N�x j � �N�x j / .ˇN�x j C 2�N�x j /

3
777777777775

vk�j D

2
666666664

vk1j

vk2j
:::

vkN�x �1j

vkN�x j

3
777777775
; mk�j D

2
666666664

mk1j

mk2j
:::

mkN�x �1j

mkN�x j

3
777777775

Note that we usedN�x as an abbreviation forNx � 1. The computational cost of solving
this equation with the LU-decomposition method is O.N�x /, hence all together O.N�x �

Ny/.
We calculate the missing values vk0j and vkNxj with the so-called soft boundary con-

dition. Let us define:

vxx.t; x0; y/ WD f .t; x0; y/ and vxx.t; xN ; y/ WD f .t; xN ; y/
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Then the boundary conditions are given as follows:

vkNxj � 2v
k
N�x j
C vkN�x �1j

4x2
D f kN�x j () vkNxj D 2v

k
N�x j
� vkN�x �1j C4x

2f kN�x j

vk2j � 2v
k
1j C v

k
0j

4x2
D f k1j () vk0j D 2v

k
1j � v

k
2j C4x

2f k1j

9>>>=
>>>;

(C.8)

We apply the so-called soft boundary condition, which means that f � 0, hence:

vxx.t; x0; y/ WD 0 and vxx.t; xN ; y/ WD 0

A.2 Second step

In this section we explain the implicit scheme in the y direction. By defining:

nkij WD v
k
ij � �4tDyu

kC1
ij

D vkij � �4t

�
� 1
2
NrukC1ij

C .�2S � 2�sy/
1

4y
.� 1

12
ukC1ijC2 C

2
3
ukC1ijC1 �

2
3
ukC1ij�1 C

1
12
ukC1ij�2/

�

Equation (C.6) can be rewritten as:

ciju
k
ij C eiju

k
ijC2 C diju

k
ijC1 C biju

k
ij�1 C aiju

k
ij�2 D n

k
ij

aij D �4t

�
�
.�2S � 2�sy/

124y

�

bij D �4t

�
2.�2S � 2�sy/

34y

�
cij D 1C

1
2
Nr�4t

dij D �4t

�
�
2.�2S � 2�sy/

34y

�

eij D �4t

�
.�2S � 2�sy/

124y

�

Again we use the soft condition (with f � 0). Since we have a five-point discretization,

we have two points left at the boundary. We will estimate the inner one with a three-point

discretization and the outer one with a five-point discretization.

The upper boundary conditions are:

ukiNy�1 D 2u
k
iNy�2

� ukiNy�3 (C.9)

ukiNy D 2u
k
iNy�2

� ukiNy�4 (C.10)
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Putting this in the above equation yields:

QnkiNy�2 D .aiNy�2 � eiNy�2/„ ƒ‚ …
a�
iNy�2

ukiNy�4 C .biNy�2 � diNy�2/„ ƒ‚ …
b�
iNy�2

ukiNy�3

C .ciNy�2 C 2diNy�2 C 2eiNy�2/„ ƒ‚ …
c�
iNy�2

ukiNy�2 (C.11)

QnkiNy�3 D aiNy�3„ ƒ‚ …
a�
iNy�3

ukiNy�5 C biNy�3„ƒ‚…
b�
iNy�3

ukiNy�4 C .ciNy�3 � eiNy�3/„ ƒ‚ …
c�
iNy�3

ukiNy�3

C .diNy�3 C 2eiNy�3/„ ƒ‚ …
d�
iNy�3

ukiNy�2 (C.12)

The lower boundary conditions are:

uki1 D 2u
k
i2 � u

k
i3 (C.13)

uki0 D 2u
k
i2 � u

k
i4 (C.14)

These result in the following equations:

Qnki2 D .ci2 C 2ai2 C 2bi2/„ ƒ‚ …
c�
i2

uki2 C .di2 � bi2/„ ƒ‚ …
d�
i2

uki3 C .ei2 � ai2/„ ƒ‚ …
e�
i2

uki4

Qnki3 D .bi3 C 2ai3/„ ƒ‚ …
b�
i3

uki2 C .ci3 � ai3/„ ƒ‚ …
c�
i3

uki3 C di3„ƒ‚…
d�
i3

uki4 C ei3„ƒ‚…
e�
i3

uki5 (C.15)

All together we get following linear system of equations:

N k
i �u

k
i � D n

k
i � (C.16)

with:

N k
i � D

2
666666666666666664

c�i2 d�i2 e�i2 0 � � � 0

b�i3 c�i3 d�i3 e�i3 0 � � � 0

ai4 bi4 ci4 di4 ei4 0
:::

0 ai5 bi5 ci5 di5 ei5
:::

::: 0
: : :

: : :
: : :

: : : 0

::: 0 aiNy�4 biNy�4 ciNy�4 diNy�4 eiNy�4

0 � � � 0 a�iNy�3 b�iNy�3 c�iNy�3 d�iNy�3

0 � � � 0 a�iNy�2 b�iNy�2 c�iNy�2

3
777777777777777775
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uki � D

2
666666664

uki2

uki3
:::

ukiNy�3

ukiNy�2

3
777777775
; nki � D

2
666666664

nki2

nki2
:::

nkiNy�3

nkiNy�2

3
777777775

APPENDIX D: A SUFFICIENT CONDITION FOR A POSITIVE
CREDIT SPREAD PROCESS IN THE RS APPROACH

In this section we will prove a sufficient condition under which it is ensured that the credit
spread process will stay positive. We do this for the credit spreads whose dynamics follow
Equation (9) and whose volatility dynamics relays on the RS approach withm D 1, ie, for
�S.t; t/ D �s.t/. Recall the dynamics of the credit spread s.t/:

s.t/ D Xs.t/C S.0; t/

dXs.t/ D .��s.t/Xs.t/C ˚s.t// dt C �S.t; t/ dW2.t/; Xs.0/ D 0

d˚s.t/ D �
2
S .t; t/ dt � 2�s.t/˚s.t/ dt; '.0/ D 0

which can be rewritten as:

ds.t/ D �.t; s.t/; ˚s.t// dt C �S.t; t/ dW2.t/; s.0/ D s0

�.t; s.t/; ˚s.t// D �s.t/.S.0; t/ � s.t//C ˚s.t/C
d

dt
S.0; t/

d˚s.t/ D �
2
S .t; t/ dt � 2�s.t/˚s.t/ dt; '.0/ D 0

We define a process Qs.t/ such that:

dQs.t/ D Q�.t; Qs.t// dt C �S.t; t/ dW2.t/; Qs.0/ D s0 (D.1)

Q�.t; Qs.t// D �s.t/.S.0; t/ � Qs.t//C
d

dt
S.0; t/ 6 �.t; s.t/; ˚s.t// (D.2)

Then, since the processes s.t/ and Qs.t/ satisfy the conditions (i)–(v) of Proposition 2.18
in Karatzas and Shreve (2000), the following relationship holds:

P Œs.t/ > Qs.t/; 80 6 t <1� D 1

Condition (iv), ie, (D.2), holds since, by definition, we have that:

˚s.t/ D

Z t

0

�2S .u; t/ du > 0

Condition (v) is fulfilled in the Li et al (1995) case due to m D 1, see Example 2.14 in
Karatzas and Shreve (2000).
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TABLE 7 Default-free and defaultable discount factors at the valuation date: October
17, 2008.

DF (EUR) S10 IG S10 Xover
Date B.0; T / D.0; T / D.0; T /

October 17, 2008 1.000 1.000 1.000
December 20, 2008 0.9911 0.9975 0.9870
March 20, 2009 0.9789 0.9941 0.9683
June 20, 2009 0.9665 0.9906 0.9499
September 20, 2009 0.9569 0.9872 0.9318
December 20, 2009 0.9496 0.9837 0.9141
March 20, 2010 0.9422 0.9803 0.8968
June 20, 2010 0.9344 0.9769 0.8797
September 20, 2010 0.9267 0.9735 0.8630
December 20, 2010 0.9157 0.9701 0.8466
March 20, 2011 0.9078 0.9668 0.8305
June 20, 2011 0.8980 0.9634 0.8146
September 20, 2011 0.8884 0.9601 0.7993
December 20, 2011 0.8788 0.9567 0.7841
March 20, 2012 0.8694 0.9534 0.7691
June 20, 2012 0.8600 0.9501 0.7545
September 20, 2012 0.8507 0.9468 0.7402
December 20, 2012 0.8415 0.9435 0.7262
March 20, 2012 0.8326 0.9403 0.7123
June 20, 2013 0.8236 0.9369 0.6988
September 20, 2013 0.8146 0.9337 0.6854
December 20, 2013 0.8056 0.9304 0.6725

Due to the variations of constants formula (see, for example, Korn and Korn (2001,
p. 62)), Qs.t/ has the following unique solution:

Qs.t/ D e�.�sC0:5�
2/tC�W2.t/

�
Qs0 C

Z t

0

e�.�sC0:5�
2/tC�W2.t/a.u/ du

�
where:

a.t/ WD �sS.0; t/C
d

dt

S.0; t/

�s
We notice that a sufficient condition for Qs.t/ > 0 is a.t/ > 0, which is equivalent to:

d

dt
S.0; t/ > ��2s S.0; t/

or to:
S.0; t/ > S0e��

2
s t

Finally, notice that the sufficient condition for the credit spread model to stay positive
is a very weak one.

APPENDIX E: DATA

The discount and default risk factors used in this study are collected in Table 7.
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