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Application Design in C# The Monte Carlo Method for Option 
Pricing 
 
1. Introduction and Objectives 
In this chapter we analyse, design and implement a software system to price one-factor financial options using 
the Monte Carlo method. The programming language used is C# and many of the design principles are also 
applicable to C++ and Java. For more background information on the Monte Carlo method and its applications 
to computational finance, see Glasserman 2004, Duffy and Kienitz 2009. Although the focus is on software 
design and implementation we do not shy away from dealing with the mathematical and financial foundations 
relating to the Monte Carlo method. An understanding of this material is needed if we are to understand the 
design rationale and the component interfaces. We need to explain a number of advanced topics and for this 
reason we restrict our attention to one-factor models.  
 
The prerequisites for understanding this chapter are knowledge of the following topics: 

 Some acquaintance with stochastic differential equations (SDEs) and their numerical approximation by 
one-step finite difference schemes. We shall model these mathematical concepts as classes with well-
defined responsibilities and interfaces. For background information, see Kloeden and Platen 1995. 

 Some basic knowledge of plain, barrier, lookback and Asian options. The pricing modules will model some 
of their essential properties. 

 Knowledge of the software structure of a Monte Carlo engine (Duffy and Kienitz 2009). This structure will 
form the core of a (mediator) class that coordinates the data and control flow between the various 
modules and classes in the application. 

 System/functional decomposition techniques that produce a system context diagram as well as loosely 
coupled and cohesive subsystems and their responsibilities. Additionally, knowing that the software system 
in this chapter is a special case of a Domain Architecture (Duffy 2004), namely an instance of a RAT 
(Resource Allocation and Tracking) system will give us insights into the structure of the current application 
(reasoning by analogy). 

 Some high-priority design patterns, in particular next-generation Builder that we discussed in previous 
chapters; in general, we do not need the traditional GOF patterns in this application because of the defined 
process and system decomposition techniques that we employ. In fact, our design is more flexible in our 
opinion than any design based on the traditional object-oriented programming model in combination with 
the GOF patterns. 

 Knowledge of some advanced C# and the .NET Framework, in particular: delegates, tuples, generics, 
interfaces and the Standard Event Pattern.  

 Knowledge of policy-based design and provides-requires interfaces. In particular, is it is important to 
understand the concept of the service that a software module expects or requires from other modules. 
These are concepts that are not present in the traditional object-oriented model. 

 
We have discussed these topics in detail in previous chapters and we do not repeat them here. 
We have a number of goals that we would like to realise in this chapter. First, we introduce a number of 
techniques that help us design stable and flexible software systems. These techniques are more than 40 years 
old but they are presented here in a new light. Second, we design an application from beginning to end to 
show how these design principles work in practice. Finally, the lessons learned can be applied to other kinds of 
problems. 
We assume that the reader is familiar with the mathematical notation underlying stochastic differential 
equations. 
 
2. Problem Description  
In the past we have addressed and solved this problem using the C++ object-oriented model in Duffy and 
Kienitz 2009 as well as a new systems approach as shown in Figure 1.  
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Figure 1 Context diagram for Monte Carlo application 

The classes are: 

 RNG: the classes that generate random numbers (for example, Mersenne-Twister). 

 SDE: the class that models stochastic differential equations. 

 FDMVisitor: a family of classes, each one implementing a particular finite difference method. We have 
used the classic GOF Visitor pattern. 

 Payoff: classes that model payoffs, for example call and put options. 

 MCSolver: the classes that implement the option pricing algorithms based on the underlying path 
information from the FDMVisitor classes. 

 MCMediator : the central coordinator that manages control flow and data flow between the other 
modules in Figure 1. 

 ProgressSystem: these are the modules that receive data from the running application, for example for 
statistics gathering and reporting. 

 
In this chapter we adapt and improve the design in Figure 1 and we implement it in C#. 
 
3. Domain Architecture and System Design 
We have examined Monte Carlo option pricing from an object-oriented approach based on design patterns in 
C++ as discussed in Duffy and Kienitz 2009. The essential features of the design consisted of the use of classes 
and class hierarchies to model mathematical concepts and the direct application of design patterns to help 
promote the extendibility of the application. In this chapter however, we take a radically different approach by 
decomposing the system into loosely-coupled and cohesive subsystems having well-defined interfaces (that 
we need to define). The discovery of these subsystems is sometimes by trial and error and this can be a time-
consuming process. We do not discuss this process here but instead we summarise these ad-hoc efforts by 
realising that the current application is an instance of or special case of a Resource Allocation and Tracking 
(RAT) domain category that we have already discussed in this book and in Duffy 2004. The systems in this 
category share the common characteristic that they process some kind of a request and produce some result 
concerning the status of the request in space and time. The best example of a RAT instance (which, incidentally 
was why we were able to formalise the RAT category) is a helpdesk system. The input is a user request and the 
output is a report (or several reports) describing the status of the request in time and space. For example, a 
user has placed an order to purchase a book online and she would like to know how long it will take to arrive 
on the doorstep. In the same vein, we see the Monte Carlo engine as having a similar structure and data flow: 
1. Determine the payoff and kind of option to be priced. 

2. Choose the SDE that models the behaviour of the underlying asset or variable. 

3. Determine how the SDE will be approximated using a finite difference scheme. 

4. Configure system parameters and define the management system that stores the audit/performance trail 

of the running engine. 
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5. Define the option pricers; for example, it is possible to configure the system to price several kinds of 

options. 

6. Configure the object network using the Builder pattern. 

 

Builder

MIS

Pricer

Mediator

SdeSource RngFdm

 

Figure 2 New Context diagram for Monte Carlo engine 

The context diagram for the current application is shown in Figure 2. It is a special case of the abstract context 
diagram for applications that belong to the Resource Allocation and Tracking (RAT) category that we have 
already discussed in detail in previous chapters. In general, RAT systems track requests in time and space and 
they produce the corresponding reports on the status of these requests. In this case the request is to compute 
the price of one-factor plain, barrier, lookback and Asian options using the Monte Carlo method. The request is 
processed in a series of steps to produce the final output by the subsystems (modules) in the UML component 
diagram in Figure 2: 

 Source: The system containing the data relating to the request, for example price a plain one-factor option 
with given market data. It  contains data that is needed by other modules in Figure 2. 

 Sde: The system that models stochastic differential equations (SDEs). In this case we model Geometric 
Brownian Motion (GBM) and its variants. In particular, we are interested in modelling the drift and 
diffusion of some underlying variable such as the stock price or interest rate, for example. In general, SDEs 
do not have an analytic solution and approximate methods must be used. 

 Fdm: The family of finite difference schemes that approximate the sdes in the Sde system. In this case we 
use one-step difference schemes to advance the approximate solution of the sde from one time level to 
the next time level until we reach the desired solution at the expiry. The finite difference schemes require 
the services of a module that computes random numbers and standard Gaussian variates, that is variates 
with mean zero and standard deviation one. We shall discuss native random number generators in .NET as 
well as native C++ 11 classes that we wrap in Managed C++ and that can be called from C#. 

 Pricer: This system contains classes to price one-factor options using the Monte Carlo simulation technique. 
The classes process path information from the Mediator and each class processes this path information in 
its own way. For example, for a plain option the pricer uses the path data at expiry, uses it to compute the 
payoff, adds the result to a running total and then discounts the result to compute the option price. 

 MIS: This is the statistics-gathering system that receives status information concerning the progress of 
computation. For example, this system (if configured for the purpose) could display how many paths have 
been processed at any given time.  

 Builder: This system implements a configuration/creational pattern (based on GOF 1995 but much more 
general) that creates and initialises the systems and their structural relationships in Figure 2. The newly-
created objects are encapsulated in .NET tuples which adds to the overall maintainability of the system. 

 Mediator: This is the central coordinating system that manages the data and control flow in the system as 
can be seen from Figure 2. It is the driver of the system as it were and it contains the state machine that 
compute the paths of the SDE. It also informs the other relevant systems of changes that they need to 
know about. It also plays the role of client in the Builder pattern (GOF 1995). The mediator can also contain 
cached data. 

 Rng: a system to generate random numbers. 
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Having determined the global data flow in the system and the subsystems (each one having a single well-
defined responsibility) we then need to determine the required-provided interfaces. These will be forthcoming 
by studying the mathematics corresponding to the various subsystems and then mapping the mathematical 
functionality to standardised C# interfaces. This will be the subject of the coming sections. For example, the C# 
interface to describe the one-step finite difference schemes that we use is:  

 

public interface IFdm 

{ // Interface for one-step FDM methods for SDEs 

 

  // Choose which SDE model to use 

  ISde StochasticEquation 

  { 

   get; 

   set; 

  } 

 

  // Advance solution from time level t[n] to time level t[n+1] 

  double advance(double xn, double tn, double dt,  

    double WienerIncrement, double WienerIncrement2); 

} 

 
Of course, we must specify all the interfaces in Figure 2 and we duly do so as we progress in this chapter.  
We note that the design in Figure 2 is language-independent in the sense that it can be implemented in any 
language that supports structures and interfaces. For example, a solution in C# could be easily ported to one in 
Java (and vice versa) since these two languages are so alike. We can emulate C# interfaces by C++ abstract 
classes and pure virtual member functions and again code porting from C# to C++ is relatively easy. 
Furthermore, we can use delegates in C# or C++ 11 functions and Boost signals to avoid our having to create 
class hierarchies with subtype polymorphism to create families of similar classes. In short, these issues belong 
to the low-level detailed design stage of the software development process and we try to postpone such 
decisions for as long as possible. A traditional object-oriented solution to the design in Figure 2 using C++ and 
GOF design patterns is discussed in Duffy and Kienitz 2009. 
We now discuss how we design the modules from Figure 2 in C#. There are several design choices and we 
discuss them before selecting the most appropriate. 
 
4. Stochastic Differential Equations (SDEs) 
We are interested in modelling one-factor SDEs of the form (see Kloeden, Platen and Schurz 1997): 
 
 dX = ¹(t;X)dt+ ¾(t;X)dWdX = ¹(t;X)dt+ ¾(t;X)dW  

 
where 
 

 

X ´ Xt ´ X(t) (stochastic process)

and

¹(t; x) 2 R (drift)

¾(t; x) 2 R (di®usion)

W ´Wt ´W (t) (Wiener process)

X ´ Xt ´ X(t) (stochastic process)

and

¹(t; x) 2 R (drift)

¾(t; x) 2 R (di®usion)

W ´Wt ´W (t) (Wiener process)

 (1) 

 
In general, an SDE is uniquely specified if we define the drift, diffusion, Wiener increment and the initial 
condition of the stochastic process X(t)X(t). Using the traditional object-oriented model this would entail creating 

classes or class hierarchies to encapsulate the above information. This structural approach is taken in Duffy 
and Kienitz 2009. In this chapter however, we take a different viewpoint by focusing on the minimal set of 
abstract services that all sdes must deliver to clients: 

 The drift function. 

 The diffusion function. 

 The interval [0; T ][0; T ] on which the sde is defined. 

 The initial value X(0)X(0) of the stochastic process XX . 
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In this chapter we model the above group of characteristics as an interface. The interface contains abstract 
methods and properties (notice that we have changed the order of the parameters compared to those in 
equation (1)): 

 

public interface ISde 

{ // Standard one-factor SDE dX = a(X,t)dt + b(X,t)dW, X(0)given 

 //      dX = mu(X,t)dt + sig(X,t)dW 

 

 

 double Drift(double x, double t);  // a (mu) 

 double Diffusion(double x, double t);  // b (sig) 

 

 // Some extra functions associated with the SDE 

 double DriftCorrected(double x, double t, double B); 

 double DiffusionDerivative(double x, double t); 

 

 // Property to set/get initial condition 

 double InitialCondition 

 { 

  get; 

  set; 

 } 

 

 // Property to set/get time T 

 double Expiry 

 { 

  get; 

  set; 

 } 

} 

 
The above methods and properties are abstract. They must be given a body in all classes that implement the 
interface. In other words, we need to create a class each time we wish to define specialised behaviour and this 
is a well-known process in the object-oriented paradigm. Run-time switching from an instance of one class to 
an instance of another class that implements the interface is not possible. We discuss how to resolve this 
problem (if it is a requirement) in exercise 1 below. 
As first example, we examine the SDE that models Geometric Brownian Motion (GBM): 
 

 
dXt = aXtdt + bXtWt a; b constant

Wt = W (t) (one-dimensional Brownian motion)

dXt = aXtdt + bXtWt a; b constant

Wt = W (t) (one-dimensional Brownian motion)

 (2) 

 
or more generally 
 

 

dSt = ¹(t)Stdt+ ¾(t)StdWt

where

¹(t) is the drift coe±cient

¾(t) is the di®usion coe±cient:

dSt = ¹(t)Stdt+ ¾(t)StdWt

where

¹(t) is the drift coe±cient

¾(t) is the di®usion coe±cient:

 (3) 

 
In the case of constant drift and diffusion the exact solution of (3) is given by: 
 

 St = S0 exp((¹¡
1

2
¾2)t+ ¾Wt):St = S0 exp((¹¡

1

2
¾2)t+ ¾Wt): (4) 

 
The C# class that models SDE (2) is given by: 

 

public class GBM : ISde 

{ // Simple SDE 
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 private double mu;  // Drift 

 private double vol; // Constant volatility 

 private double d;  // Constant dividend yield 

 private double ic; // Initial condition 

 private double exp; // Expiry 

 

 public GBM(double driftCoefficient, double diffusionCoefficient,  

    double dividendYield, double initialCondition, double expiry) 

 { 

  mu = driftCoefficient; 

  vol = diffusionCoefficient; 

  d = dividendYield; 

  ic = initialCondition; 

  exp = expiry; 

 } 

 

 public double Drift(double x, double t) { return (mu - d) * x; } 

 public double Diffusion(double x, double t) { return vol * x; } 

 

 public double DriftCorrected(double x, double t, double B) 

 { 

  return Drift(x, t) - B * Diffusion(x, t) * DiffusionDerivative(x, t); 

 } 

 

 public double DiffusionDerivative(double x, double t) 

 { 

  return vol; 

 } 

 

 // Property to set/get initial condition 

 public double InitialCondition 

 { 

  get 

  { 

   return ic; 

  } 

  set 

  { 

   ic = value; 

  } 

 } 

 

 // Property to set/get time T 

 public double Expiry 

 { 

  get 

  { 

   return exp; 

  } 

  set 

  { 

   exp = value; 

  } 

 } 

 

} 

 
This code is a straightforward implementation of the SDE (2) and we see that the drift and diffusion 
parameters are initialised by providing appropriate arguments in the constructor.  
Each new SDE can result in a new class and there could be some opportunity for code optimisation and 
refactoring in the sense that we could design a C# class that models a range of SDEs but this issue is outside 
the scope of this chapter. It is an optimisation step to a certain extent. 
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5. Numerical Approximation of SDEs 
In this section we introduce the finite difference method (FDM) and we apply it to finding approximate 
solutions of SDEs. We define the notation that we use in this and subsequent chapters. 
 
The first step is to replace continuous time by discrete time. To this end, we divide the interval [0; T ][0; T ] (where TT  

is the expiry date) into a number of subintervals. We define N + 1N + 1 mesh points as follows: 

 
 0 = t0 < t1 < :: < tn < tn+1 < :: < tN = T:0 = t0 < t1 < :: < tn < tn+1 < :: < tN = T: 

 

In this case we define a set of subintervals (tn; tn+1)(tn; tn+1) of size ¢tn ´ tn+1¡ tn;0· n·N ¡1¢tn ´ tn+1¡ tn;0· n·N ¡1. In general, 

we speak of a non‐uniform mesh when the sizes of the sub‐intervals are not necessarily the same. However we 
consider a large class of finite difference schemes where the N subintervals have the same size (we then speak 

of a uniform mesh), namely ¢t = T=N¢t = T=N . 

Having defined how to subdivide [0; T ][0; T ] into subintervals we are now ready to motivate our finite difference 

schemes; the simplest example is the scalar linear SDE with constant coefficients: 
 

 
dX = aXdt+ bXdW; a; b constant

X(0) = A:

dX = aXdt+ bXdW; a; b constant

X(0) = A:
 (5) 

 
Regarding notation, we do not show the dependence of variable XX  on tt  and when we do wish to show this 

dependence we prefer to write X = X(t)X = X(t) instead of the form XtXt. 

 
We now discuss one-step finite difference schemes to approximate to the solution of general one-factor SDEs. 
To this end, we take the model SDE: 
 

 
dX(t) = ¹(X(t))dt+ ¾(X(t))dW(t) 0 < t · T

X(0) = A:

dX(t) = ¹(X(t))dt+ ¾(X(t))dW(t) 0 < t · T

X(0) = A:
 (6) 

 
We discretise the interval [0, T] into N subintervals and we adopt the notation: 
 

 ¹n ´ ¹(Xn); ¾n = ¾(Xn) n = 0; ::;N; ¢Wn =
p
¢tZ; Z »N(0;1):¹n ´ ¹(Xn); ¾n = ¾(Xn) n = 0; ::;N; ¢Wn =

p
¢tZ; Z »N(0;1):  

 
Some schemes are: 

 Explicit Euler: 
 Xn+1 =Xn +¹n¢t+¾n¢Wn:Xn+1 =Xn +¹n¢t+¾n¢Wn: (7) 

 

 Semi‐implicit Euler: 

 

Xn+1 = Xn + [®¹n+1 + (1¡ ®)¹n]¢t+ ¾n¢Wn

with special cases

® = 1
2
(Trapezoidal)

® = 1 (Backward Euler):

Xn+1 = Xn + [®¹n+1 + (1¡ ®)¹n]¢t+ ¾n¢Wn

with special cases

® = 1
2
(Trapezoidal)

® = 1 (Backward Euler):

 (8) 

 Heun: 

 

Xn+1 = Xn + 1
2
[F1 + F2]¢t + 1

2
[G1 + G2]¢Wn

where

F (x) ´ ¹(x)¡ 1
2
¾

0

(x)¾(x)

¾
0

(x) ´ d¾
dx

F1 = F (Xn); G1 = ¾(Xn)

F2 = F (Xn + F1¢t + G1¢Wn)

G2 = ¾(Xn + F1¢t + G1¢Wn):

Xn+1 = Xn + 1
2
[F1 + F2]¢t + 1

2
[G1 + G2]¢Wn

where

F (x) ´ ¹(x)¡ 1
2
¾

0

(x)¾(x)

¾
0

(x) ´ d¾
dx

F1 = F (Xn); G1 = ¾(Xn)

F2 = F (Xn + F1¢t + G1¢Wn)

G2 = ¾(Xn + F1¢t + G1¢Wn):

 (9) 

 

 Milstein: 

 Xn+1 = Xn +¹n¢t+ ¾n¢Wn + 1
2
[¾

0

¾]n((¢Wn)
2 ¡¢t):Xn+1 = Xn +¹n¢t+ ¾n¢Wn + 1

2
[¾

0

¾]n((¢Wn)
2 ¡¢t): (10) 

 



8 
 

 Derivative‐free: 

 

Xn+1 = Xn + F1¢t + G1¢Wn + [G2 ¡G1]¢t¡1=2 (¢Wn)2¡¢t

2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn + G1¢t1=2):

Xn+1 = Xn + F1¢t + G1¢Wn + [G2 ¡G1]¢t¡1=2 (¢Wn)2¡¢t

2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn + G1¢t1=2):

 (11) 

 

 First‐order Runge Kutta with Ito coefficient (FRKI): 

 

Xn+1 = Xn + F1¢t +G2¢Wn + [G2 ¡G1]¢t1=2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn +
G1(¢Wn¡¢t1=2)

2
):

Xn+1 = Xn + F1¢t +G2¢Wn + [G2 ¡G1]¢t1=2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn +
G1(¢Wn¡¢t1=2)

2
):

 (12) 

 
We now define an interface that describes the sde that the finite difference scheme is approximating and the 
abstract method that describes how to compute the approximate solution at time level n+1 in terms of the 
known solution at time level n: 

 

public interface IFdm 

{ // Interface for one-step FDM methods for SDEs 

 

 // Choose which SDE model to use 

 ISde StochasticEquation 

 { 

  get; 

  set; 

 } 

 

 // Advance solution from level t[n] to level t[n+1] 

 double advance(double xn, double tn, double dt,  

        double WienerIncrement, double WienerIncrement2); 

} 

 
We see that clients of this interface and of the classes that implement the interface must provide two Wiener 

increment values as input to the advance()method. This design decision ensures that the classes that 
implement the various finite difference schemes can focus on the time-marching aspects of the schemes 
without having to generate random numbers themselves in the process. To this end, we have several 
dedicated interfaces and classes for generating random numbers that we discuss in the next section. 
 
We now define a base class from which all specific classes are derived. It contains structure and functionality 
that is common to all derived classes, for example the related sde and the discrete mesh array: 

 

public abstract class FdmBase : IFdm 

{ 

 protected ISde sde; 

 

 public int NT;  // Number of subdivisions 

 public double[] x; // The mesh array 

 public double k;  // Mesh size 

 

 public FdmBase(ISde stochasticEquation, int numSubdivisions) 

 { 

  sde = stochasticEquation; 

  NT = numSubdivisions; 

  k = sde.Expiry / (double)NT; 
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  x = new double[NT + 1]; 

 

  // Create the mesh array 

  x[0] = 0.0; 

  for (int n = 1; n < x.Length; n++) 

  { 

   x[n] = x[n - 1] + k; 

  } 

 } 

 

 public ISde StochasticEquation 

 { 

  get 

  { 

   return sde; 

  } 

  set 

  { 

   sde = value; 

  } 

 } 

 

 public abstract double advance(double xn, double tn, double dt,  

           double WienerIncrement, double WienerIncrement2); 

} 

 
We see a pattern emerging here: first, at the highest level we define by an interface the common abstract 
services that (unspecified) components implement. In this case we specify the methods that are common to all 
one-factor finite difference methods, namely defining which SDE they are approximating and the formula that 
advances the approximate solution from level nn to level n+1n+1. Secondly, we create a base class that 

implements the interface’s methods (either by redeclaring its methods or implementing them). This base class 
contains the functionality common to all classes that implement finite difference schemes such as the mesh 
array  and the step size, for example. It can also contain methods that are shared by its derived classes. In fact, 
this is where the application of the Template Method pattern (GOF 1995) is most appropriate in order to 
promote code reuse and to avoid costly and damaging refactoring activities later. In short, the interface 
encsapsulates pure behaviour while the base class contains structural information relevant to all of its 
specialisations. Of course, we are referring to the ISA (Gen-Spec) relationship between classes.  
The classes that implement specific finite difference schemes are reasonably lightweight and stateless in 
general. For example, these classes have no functionality for generating random numbers (for example) as 
these are created by other classes and used as arguments in the method advance(). Of course , some classes 
will have their own specific member data.  
 
As a first example, the simplest  finite difference scheme is probably the explicit Euler scheme (7). The 
corresponding code is: 

 

public class EulerFdm : FdmBase 

{ 

 public EulerFdm(ISde stochasticEquation, int numSubdivisions)  

        : base(stochasticEquation, numSubdivisions) { } 

 

 public override double advance(double xn, double tn, double dt, 

         double normalVar, double normalVar2) 

 { 

   return xn + sde.Drift(xn, tn) * dt  

   + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar; 

 } 

} 
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Another popular scheme due to Milstein (10) is: 
 

public class MilsteinFdm : FdmBase 

{ 

 public MilsteinFdm(ISde stochasticEquation, int numSubdivisions)  

    : base(stochasticEquation, numSubdivisions) { } 

 

 public override double advance(double xn, double tn, double dt, 

        double normalVar, double normalVar2) 

 { 

  return xn + sde.Drift(xn, tn) * dt  

              + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar 

              + 0.5 * dt * sde.Diffusion(xn, tn)  

               * sde.DiffusionDerivative(xn, tn) * (normalVar * (dynamic)normalVar - 1.0); 

 } 

} 

 
As final example, we discuss the modified predictor-corrector method: 
 

 

Xn+1 = Xn +
n
®¹¯(

~Xn+1) + (1¡ ®)¹¯(Xn)
o
¢t

+
n
¯¾( ~Xn+1) + (1¡ ¯)¾(Xn)

o
¢Wn; n ¸ 0

Xn+1 = Xn +
n
®¹¯(

~Xn+1) + (1¡ ®)¹¯(Xn)
o
¢t

+
n
¯¾( ~Xn+1) + (1¡ ¯)¾(Xn)

o
¢Wn; n ¸ 0

 (13) 

 
where the corrector drift function is defined by: 
 

 ¹¯(x) = ¹(x)¡ ¯¾(x)
@¾

@x
(x):¹¯(x) = ¹(x)¡ ¯¾(x)

@¾

@x
(x): (14) 

 
Furthermore, you can customise the scheme to support different levels of implicitness and explicitness in the 
drift and diffusion terms: 
 

 

A. Fully explicit(® = ¯ = 0)

B. Fully implicit(® = ¯ = 1)

C. Implicit in drift explicit in di®usion (® = 1;¯ = 0)

D. Symmetric(® = ¯ = 1=2)

A. Fully explicit(® = ¯ = 0)

B. Fully implicit(® = ¯ = 1)

C. Implicit in drift explicit in di®usion (® = 1;¯ = 0)

D. Symmetric(® = ¯ = 1=2)

 

 
The code that implements this scheme is: 

 

public class ModifiedPredictorCorrectorFdm : FdmBase 

{ // PC using adjusted drift 

 

 private dynamic A, B, VMid; 

 

 public ModifiedPredictorCorrectorFdm(ISde stochasticEquation,  

         int numSubdivisions, double a, double b) 

          : base(stochasticEquation, numSubdivisions) 

 { 

  A = a; 

  B = b; 

 

 } 

 

 public override double advance(double xn, double tn, double dt,  

           double normalVar, double normalVar2) 

 { 

        

  // Euler for predictor 

  VMid = xn + sde.Drift(xn, tn) * dt  

          + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar; 
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  // Modified Trapezoidal rule 

  double driftTerm = (A * sde.DriftCorrected(VMid, tn + dt, B)  

         + ((1.0 - A) * sde.DriftCorrected(xn, tn, B))) * dt; 

 

  double diffusionTerm = (B * sde.Diffusion(VMid, tn + dt)  

            + ((1.0 - B) * sde.Diffusion(xn, tn))) * Math.Sqrt(dt)  

            * normalVar; 

 

  return xn + driftTerm + diffusionTerm; 

 } 

} 

 
It  is clear that this method is more computationally intensive than the Euler or Milstein methods because of 
the greater number of function calls. 
 
6. Random Number Generation 
One of the tools that is needed in a Monte Carlo simulator is a suitable random number generator.  It is not 
our intention to discuss this in great detail here but we do discuss some mathematical background,  code to 
compute pseudo-random numbers and how this code fits into the current framework.  In general we need to 
first generate uniform random numbers on the unit interval and based on these numbers we generate normal 
variates. We first describe two methods for generating normal variates. 
 
6.1 Polar Marsaglia Method 
This method uses the fact that if the random variable UU  is U (0; 1)U (0; 1) then the random variable VV  defined by 
V = 2U ¡ 1V = 2U ¡ 1 is U(¡1; 1)U(¡1; 1). We now choose two variables defined by: 

 
 Vj = 2Uj ¡ 1; Uj » U(0; 1); j = 1; 2:Vj = 2Uj ¡ 1; Uj » U(0; 1); j = 1; 2:  

 
Then we define: 

 W = V 2
1 + V 2

2 · 1; W » U(0;1):W = V 2
1 + V 2

2 · 1; W » U(0;1): 

 
We keep trying with different values until the above inequality is satisfied. Continuing, we define the 
intermediate value: 

 Y =
p
¡2 log(W)=W:Y =

p
¡2 log(W)=W: 

 
Finally, the pair of values defined by: 
 
 Nj = VjY; j = 1; 2Nj = VjY; j = 1; 2 

 
are two standard normally (Gaussian) distributed random variables, and we are done. 
 
6.2 Box-Muller Method 
This method is based on the observation that if rr  and '' are two independent U (0; 1)U (0; 1) random variables then 

the variables: 

 
N1 =

p
¡2 log r cos(2¼')

N2 =
p
¡2 log r sin(2¼'):

N1 =
p
¡2 log r cos(2¼')

N2 =
p
¡2 log r sin(2¼'):

 

 
are two independent standard Gaussian random variables. 
 
We now show how we have programmed these methods in C#. We have a number of choices for generating 
uniform numbers: 

 Using the .NET Random class. 

 Using the .NET RandomNumberGenerator. 

 Using an external C++ library that we can use from C# by means of the Managed C++ language. 
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To this end, we first discuss the design of the subsystem for generating random numbers. What do we need? 
The answer is a random number. The top-level specifications are: 

 

public interface IRng 

{ 

 double GenerateRn(); 

} 

 

public abstract class Rng : IRng 

{ 

 public abstract double GenerateRn(); 

} 

 
All concrete classes for generating random numbers are derived  from Rng , two of which are: 

 

public class PolarMarsagliaNet : Rng 

{ 

 private Random rand; 

 

 public PolarMarsagliaNet() {  rand = new Random();}  

     

 public override double GenerateRn() 

 { 

 

  double u, v, S; 

 

  do 

  { 

   u = 2.0 * rand.NextDouble() - 1.0; 

   v = 2.0 * rand.NextDouble() - 1.0; 

   S = u * u + v * v; 

  } 

  while (S >= 1.0); 

 

  double fac = Math.Sqrt(-2.0 * Math.Log(S) / S); 

  return u * fac; 

 } 

} 

 
and 

 

public class BoxMullerNet : Rng 

{ 

 private Random rand; 

 

 public BoxMullerNet() { rand = new Random(); } // Seed is from system clock 

 double U1, U2; 

   

 public override double GenerateRn() 

 { 

  // U1 and U2 should be independent uniform random numbers 

  U1 = rand.NextDouble();   // In interval [0,1) 

  U2 = rand.NextDouble();  // In interval [0,1) 

 

  // Box-Muller method 

  return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2); 

 } 

} 

 
These classes generate normal variates  for the Polar Marsaglia and Box-Muller method, respectively. In both 
cases we use the .NET Random class to generate the related uniform random numbers. We have not tested if 
this class is suitable for a production Monte Carlo simulator, in which case we may decide an external C++ 
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library, for example is more appropriate. We take the example of the Box-Muller method with a Managed C++ 
generator (in this case developed by Thijs van den Bergh): 

 

public class BoxMullerSitmo : Rng 

{ 

 private SitmoWrapper.ManagedWrapper rand; 

 

 public BoxMullerSitmo() { rand = new SitmoWrapper.ManagedWrapper(); } 

 private double U1, U2; 

 

 public override double GenerateRn() 

 { 

  // U1 and U2 should be independent uniform random numbers 

  U1 = rand.NextDouble();   // In interval [0,1) 

  U2 = rand.NextDouble();   // In interval [0,1) 

 

  // Box-Muller method 

  return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2); 

 } 

} 

 
In this case the C# code delegates to a Managed C++ wrapper class. We use it as a black box. 
Finally, we can avoid code duplication in the above classes by using plug-in methods (almost a Strategy 
pattern!). Thus, instead of hard-coded uniform random number generators we use a delegate with the 
appropriate signature: 
 

public delegate double RngDelegate(); 

 
The class with an embedded delegate is: 

 

public class BoxMullerII : Rng 

{ // RNG with embedded delegate 

 

 private RngDelegate rand; 

 private double U1, U2; 

 

 public BoxMullerII(RngDelegate randomGenerator) 

{ rand = randomGenerator; }  

 

 public override double GenerateRn() 

 { 

  // U1 and U2 should be independent uniform random numbers 

  U1 = rand();  // In interval [0,1) 

  U2 = rand();  // In interval [0,1) 

    

  // Box-Muller method 

  return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2); 

 } 

} 

 
The advantage of this approach is that we can use the class with any method that has the same signature as 
that of  RngDelegate, for example: 
 

// RNG using delegates 

Random rngNet = new Random(); 

RngDelegate rand = rngNet.NextDouble; 

IRng rng = new BoxMullerII(rand); 

Console.WriteLine("Rng via delegate {0}", rng.GenerateRn());  
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7. Pricers 
We now describe the final component in the architecture, that is the component to price one-factor options 
using the Monte Carlo method. In this section we focus on plain options in order to motivate the software 
design. The interface specification is: 

 

public interface IPricer 

{ 

 void ProcessPath(ref double[] arr); // The path from the evolver 

 void PostProcess();   // Finish off computations 

 double DiscountFactor();   // (simple) discounting function 

 double Price();    // Computed option price 

 

} 

 
For the current case these methods are sufficient but for more complicated cases we will need to create a 
complete new system. At the next level we define an abstract class: 

 

// The payoff function 

public delegate double Payoff(double underlying); 

 

public abstract class Pricer : IPricer 

{ 

 public abstract void ProcessPath(ref double[] arr); // Create a single path 

 public abstract void PostProcess();   // Notify end of simulation 

 public abstract double DiscountFactor();   // Discounting 

 public abstract double Price();    // Option price 

 

 public Payoff m_payoff; 

 protected Func<double> m_discounter; 

 

 public Pricer(Payoff payoff, Func<double> discounter) 

 { 

  m_payoff = payoff; 

  m_discounter = discounter; 

 } 

} 

 
The code for a plain one-factor pricer  is: 

 

// Pricing Engines 

public class EuropeanPricer : Pricer 

{ 

 private dynamic price; 

 private dynamic sum; 

 private int NSim; 

 

 public EuropeanPricer(Payoff payoff, Func<double> discounter)  

   : base(payoff, discounter) { price = sum = 0.0; NSim = 0; } 

 

 public override void ProcessPath(ref double[] arr)  

 { // A path for each simulation/draw 

 

  // Sum of option values at terminal time T 

  sum += m_payoff(arr[arr.Length - 1]); NSim++; 

 } 

 

 public override double DiscountFactor() 

 { // Discounting 

 

  return m_discounter(); 

 } 
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 public override void PostProcess() 

 { 

  Console.WriteLine("Compute Plain price");   price = DiscountFactor() * sum / NSim;  

  Console.WriteLine("Price: {0}, {1}", price, NSim); 

 } 

 

 public override double Price() 

 { 

  return price; 

 } 

 

} 

We have provided an exercise on how to design a general pricer system. 
 
8. System Configuration and Interface Specification 
Having documented, designed and implemented the software modules and their interfaces from Figure 2 we 
must now decide how to instantiate them. In plain terms, we need to decide which specific classes will 
implement these interfaces, we instantiate the classes and then we add them to the end-product which is the 
network of objects in Figure 2. For example, we may wish to price a barrier option based on GBM using the 
Euler method. Furthermore, we chose to generate random numbers using the Box-Muller method in 
combination with the .NET Random class. To this end, we must instantiate the appropriate classes and 
configure the software system with these choices in mind. More generally, we need to execute the following 
steps: 
1. Initialise each of the modules and their data in Figure 2. 
2. Connect the modules based on the provides-requires model. It is at this stage that we must decide whether 

to model data flow using events (push model) or by methods (pull model). 
3. Start the application. 
 
Since the system is structured as a collection of cohesive and loosely-coupled subsystems we see that it is 
relatively easy to configure it. We may need to introduce a number of new classes and functions that allow the 
system to communicate with external hardware and software systems, for example: 
1. Data sources containing settings, default values and user preferences (for example, databases, text files, 

user interfaces such as the console and graphical user interfaces). 
2. Hardware drivers as assemblies and DLLs. For example, we have encapsulated a C++ random number 

generator that we stored in an assembly and that can be loaded into memory at run-time and whose 
functionality can used by the C# code. 

 
In the interest of completeness, we should document the emergence of these new low-level classes by 
extending Figure 2 to form a design-level system context diagram. 
 
One of the objectives of this chapter is to create a customisable software system to price one-factor options 
using the Monte Carlo method. The method should support a range of SDEs, finite difference methods and 
random number generators. These are the abstractions that we create in the Builder pattern that we use to 
configure the most important modules in Figure 2. We have not included the pricer classes in this builder 
because doing so would make it less reusable. Instead, the responsibility for their creation takes places 
elsewhere in the code. This tactic also avoids our having to create and maintain an unwieldy mega-builder. To 
this end, we use a generic delegate to specify the interface for the builder: 

 

// Generic delegate for a MC builder: T1 == Sde, T2 == Fdm, T3 == IRng 

public delegate Tuple<T1, T2, T3> Builder<T1, T2, T3>(); 

 

We thus see that the delegate has three generic parameters that will be instantiated as shown in the above 
commented line. In particular, we create a builder class that creates the SDE, FDM and RNG components in 
Figure 2. It uses the Console to elicit input from the user. Furthermore, the builder uses and needs the 
parameters corresponding to well-known SDEs which results in part of the code being hard-wired but we can 
resolve this issue at a later stage. The builder class’ parameters have generic constraints defined on them; 
furthermore, this class has methods for creating the SDE, FDM and RNG as well as a factory method to return 
all three parts (the product) that conforms to the signature of the above delegate type: 
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public class MCBuilder<S, F, R> 

 where S : ISde 

 where F : IFdm 

 where R : IRng 

{ // Build the full UML model in this builder 

 

 // Next version .. encapsulate better 

 private double r; 

 private double v; 

 private double d; 

 private double IC; 

 private double T; 

 private double beta; 

 

 // Constructor (data important at this stage) 

 public MCBuilder(Tuple<double, double, double, double, double, double> data) 

 { 

  r = data.Item1; 

  v = data.Item2; 

  d = data.Item3; 

  IC = data.Item4; 

  T = data.Item5; 

  beta = data.Item6; 

 } 

 

 public Tuple<S, F, R> Parts(S sde, F fdm, R rng) 

 { // V1, parts initialised from the outside 

 

  return new Tuple<S, F, R>(sde, fdm, rng); 

 } 

 

 public Tuple<ISde, FdmBase, IRng> Parts() 

 { // V2, parts initialised from the inside 

 

  // Get the SDE 

  ISde sde = GetSde(); 

  IRng rng = GetRng(); 

  FdmBase fdm = GetFdm(sde); 

  return new Tuple<ISde, FdmBase, IRng>(sde, fdm, rng); 

 } 

 

 private ISde GetSde() 

 { 

  Console.WriteLine("Create SDE"); 

  Console.Write("1. GBM, 2. CEV "); 

  int c = Convert.ToInt32(Console.ReadLine()); 

 

  if (c == 1) 

  { // GBM 

 

   return new GBM(r, v, d, IC, T); 

  } 

  else 

  { 

   return new CEV(r, v, d, IC, T, beta); 

  } 

 } 

 

 private IRng GetRng() 

 { 

  Console.WriteLine("Create RNG"); 

  Console.WriteLine("1. Box-Muller .Net 2. Polar Marsaglia Sitmo”); 



17 
 

  // more … 

  int c = Convert.ToInt32(Console.ReadLine()); 

 

  IRng rng; 

 

  switch (c) 

  { 

   case 1: 

    rng = new BoxMullerNet(); 

    break; 

   case 2: 

    rng = new PolarMarsagliaSitmo(); 

    break; 

 

  // more … 

 

  default: 

   rng = new BoxMullerSitmo(); 

   break; 

  } 

 

  return rng; 

 } 

 

 private FdmBase GetFdm(ISde sde) 

 { 

  Console.WriteLine("Create FDM"); 

  Console.WriteLine("1. Euler, 2. Extrapolated Euler, 3. Milstein "); 

  // more  

  int c = Convert.ToInt32(Console.ReadLine()); 

 

  FdmBase fdm; 

 

  int NT = 500; 

  Console.Write("How many NT? "); 

  NT = Convert.ToInt32(Console.ReadLine()); 

 

  double a, b; 

 

  switch(c) 

  { 

   case 1: 

 

    fdm = new EulerFdm(sde, NT); 

    break; 

  case 2: 

 

    fdm = new ExtrapolatedEulerFdm(sde, NT); 

    break; 

 

  case 3:  

 

    fdm = new MilsteinFdm(sde, NT); 

    break; 

 

  // more… 

   default: 

    fdm = new ExtrapolatedEulerFdm(sde, NT); 

    break; 

  } 

 

  return fdm; 

 } 
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} 

 

 public static Builder<ISde, FdmBase, IRng> ChooseBuilder(int n) 

 {// Factory method to choose your builder 

 

  double r = 0.08; 

  double v = 0.3; 

  double div = 0.0; 

  double IC = 60.0; 

  double T = 0.25; 

  double K = 65.0; 

  double beta = 1.0; 

 

  Tuple<double, double, double, double, double, double> data = new Tuple<double, 

  double, double, double, double, double> 

    (r, v, div, IC, T, beta); 

 

  MCBuilder<ISde, FdmBase, IRng> builder = new MCBuilder<ISde, FdmBase, IRng>(data); 

 

  return builder.Parts; 

 } 

 
This builder class is not as general as we would like and in future versions we would like to have different kinds 
of builders for different kinds of stakeholders. To this end , we create a factory method that allows us to 
choose a suitable builder based on a decision and we have encapsulated this decision in a method: 

 

// Choose which builder you want 

public static Tuple<ISde, FdmBase, IRng> ChooseBuilder(int n) 

{// Factory method to choose your builder 

 

double r = 0.08; 

double v = 0.3; 

double div = 0.0; 

double IC = 60.0; 

double T = 0.25; 

double K = 65.0; 

double beta = 1.0; 

 

MCBuilder<ISde, FdmBase, IRng> builder; 

MCDefaultBuilder<ISde, FdmBase, IRng> builder2; 

 

int c = 1; 

Console.Write("1. MCBuilder, 2. Default Builder "); 

c = Convert.ToInt32(Console.ReadLine()); 

 

if (1 == c) 

{ 

 Console.Write("Chosen 1. MCBuilder "); 

 Tuple<double, double, double, double, double, double> data = new  

    Tuple<double, double, double, double, double, double> 

    (r, v, div, IC, T, beta); 

 builder = new MCBuilder<ISde, FdmBase, IRng>(data); 

 return builder.Parts(); 

} 

 else 

 { 

 Console.Write("Chosen 2. MCDefaultBuilder "); 

 builder2 = new MCDefaultBuilder<ISde, FdmBase, IRng>(); 

 return builder2.Parts(); 

 } 

 

} 
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We can then call this method in the Main() method which adds to the readability and maintainability of the 
code: 

 

Tuple<ISde, FdmBase, IRng> factory = ChooseBuilder(choice); 

  

In Main() the product that the builder creates is given by the following code: 
 

// Choose which builder to use 

int choice = 1; 

Tuple<ISde, FdmBase, IRng> parts2 = ChooseBuilder(choice); 

 
9. Putting it All Together: The Mediator 
After having designed the software components that we have already discussed in this chapter we need to 
assemble them to form a working system. This process is particularly easy in the current case because we have 
a toolkit of loosely-coupled and cohesive components that will be managed by a planning and coordination 
component called a mediator. Instead of assembling the components in an ad-hoc manner we see that the 
mediator becomes a more explicit component in the overall software architecture. Mediators have sufficient 
semantic complexity and runtime autonomy (persistence) and these properties allow them to play the role of 
first-class entities in a software architecture (Bass, Clemens and Kazman 1998). The Mediator pattern is 
described in GOF 1995. We have extended this pattern as already discussed in previous chapters . We recall 
some of the attention points to be addressed: 
1. Create the components in Figure 2 that the mediator needs (these components are created by a builder 

that the mediator is presented with). 
2. Determine the provides/requires interfaces between the mediator and the other components. 
3. Design the data flow, control flow and state machine associated with the mediator. 
 
An important remark is in order here: the mediator’s main responsibility is to coordinate the other 
components in the system. It contains no code for object creation nor does it communicate with object 
factories. This improves its maintainability. 
We design the mediator class to reflect the component diagram in Figure 2. It has a constructor that accepts a 
tuple containing the components that it needs and it has two public events that define the communication 
with the pricer components (we shall see how to assign these events in the next section): 

 

// Events 

public delegate void PathEvent<T> (ref T[] path);  // Send a path array 

public delegate void EndOfSimulation<T>();   // No more paths 

 
Finally, the mediator has a method called start()that is responsible for path generation: 

 

public class MCMediator 

{ 

 // Three main components 

 private ISde sde; 

 private FdmBase fdm; 

 private IRng rng; 

 

 // Other MC-related data  

 private int NSim;     // Number of simulations 

 private double[] res;    // Generated path per simulation 

 

 // Event notification 

 public event PathEvent<double> path;  // Signal to the Pricers 

 public event EndOfSimulation<double> finish; // All paths are complete 

 

 public MCMediator(Tuple<ISde, FdmBase, IRng> parts, int numberSimulations) 

 { 

  sde = parts.Item1; 

  fdm = parts.Item2; 

  rng = parts.Item3; 
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  NSim = numberSimulations; 

  res = new double[fdm.NT]; 

 } 

 

 public void start() 

 { // Main event loop for path generation 

 

  double VOld, VNew; 

 

  for (long i = 1; i <= NSim; ++i) 

  { // Calculate a path at each iteration 

 

   if ((i / 5000) * 5000 == i) 

   { // Give status after a given numbers of iterations 

 

   Console.WriteLine(i); 

   } 

 

   VOld = sde.InitialCondition; res[0] = VOld; 

 

   for (int n = 1; n < res.Length; n++) 

   { // Compute the solution at level n+1 

 

   VNew = fdm.advance(VOld, fdm.x[n-1], fdm.k,  

    rng.GenerateRn(), rng.GenerateRn()); 

   res[n] = VNew; VOld = VNew; 

   } 

  

   // Send path data to the Pricers 

   path(ref res); 

  } 

  finish(); // Signal to pricers to finish up 

 

 } 

} 

 
The main advantage is that the Mediator pattern encapsulates how a set of components interact. It promotes 
loose coupling by keeping components from explicitly referring to each other. 

9.2 The Relationship with Bridge and Adapter (Wrapper) Patterns 

The mediator is the central component in Figure 2. It communicates with other components using 
provides/requires interfaces. The components implementing these interfaces may have multiples layers of 
indirection and we should try to flag as many assumptions as possible that components make about their 
environment. In general, we wish to avoid or mitigate interface mismatch between software layers and 
components.  We wish to use the components in a variety of different but currently unknown contexts. It is 
important to design with change in mind and to adopt a disciplined approach from the earliest design stages. 
To this end, we can use two patterns that complement Mediator (see GOF 1995): 

 Bridge:  we decouple a component from its implementation so that the two can vary independently. 
Bridges address specific issues such as translation between different protocols and more generally by 
promoting information hiding and the resultant inter-component interchangeability. Bridges are needed 
when we wish to support legacy software. 

 Adapter (Wrapper):  an adapter is a component that converts the interface of a component into another 
interface that clients expect. Adapters let components work together that would not normally be able to 
communicate because of incompatible interfaces. 

 
We give a number of exercises in this chapter that discuss how to apply these patterns to the current Monte 
Carlo simulator. 
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10. Examples and Test Cases 
We now take a test case to show how to price a numbers of options and show how the components work 
together. In general, the following steps are executed and they can be seen as forming a pattern: 

 Initialise the option data: 
 

double r = 0.08; 

double v = 0.3; 

double div = 0.0; 

double IC = 60.0; 

double T = 0.25; 

double K = 65.0; 

double beta = 1.0; 

 

 Choose the builder that creates the components in Figure 2: 
 

// Choose which builder to use 

int choice = 1; 

Tuple<ISde, FdmBase, IRng> parts2 = ChooseBuilder(choice); 

 

 Create the mediator (central component in the application): 
 

int NSim = 1000000; 

Console.Write("How many NSim? "); 

NSim = Convert.ToInt32(Console.ReadLine()); 

 

MCMediator mcp = new MCMediator(parts2, NSim); 

 

 Create the payoff functions: 
 

// Use lambda functions to define payoffs and discounting 

Payoff payoff = x => Math.Max(0.0, K - x); 

//  Payoff payoff = x => Math.Max(0.0, x - K); 

 

Func<double> discounter = () => Math.Exp(-r * T); 

 

 Create prices and link them to the mediator so that they become the recipients of events from the 
mediator: 
 

// Manually create pricers 

IPricer op = new EuropeanPricer(payoff, discounter); 

IPricer op2 = new BarrierPricer(payoff, discounter); 

IPricer op3 = new AsianPricer(payoff, discounter); 

 

// Define slots for path information 

mcp.path += op.ProcessPath; 

mcp.path += op2.ProcessPath; 

mcp.path += op3.ProcessPath; 

mcp.path += op4.ProcessPath; 

 

// Signal end of simulation 

mcp.finish += op.PostProcess; 

mcp.finish += op2.PostProcess; 

mcp.finish += op3.PostProcess; 

mcp.finish += op4.PostProcess; 

 

 Run the program and examine the output: 
 

// Create and start the stopwatch 

Stopwatch stopWatch = new Stopwatch(); 

stopWatch.Start(); 
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mcp.start(); 

stopWatch.Stop(); 

// Get the elapsed time as a TimeSpan value. 

TimeSpan ts = stopWatch.Elapsed; 

 

// Format and display the TimeSpan value. 

string elapsedTime = String.Format("Elapsed time {0:00}:{1:00}:{2:00}.{3:00}", 

     ts.Hours, ts.Minutes, ts.Seconds, ts.Milliseconds / 10); 

Console.WriteLine(elapsedTime, "RunTime"); 

 

 
We are finished! This code can form the basis for more general solutions. 
 
11. The Project Management and Software Architecture Perspectives 
Figure 2 represents the architecture of the software system that we have discussed in this chapter. It did not 
originate in a big bang process as it were but it is a special case of a domain-independent model that the 
author has developed and applied to create applications (see Duffy 2004). Furthermore, prior to having 
developed the solution to Figure 2 we had already written a similar prototype in C++ to price options using the 
Monte Carlo Method. We can conclude that the system is reasonably stable and we use it as the common 
reference model that all the members of the software team use in order to communicate with each other. In 
this way we hope to bridge the communication gap between the different project stakeholders. Most software 
projects have budget and time-to-market. We do not discuss what the roles of these two stakeholder groups 
are here (this will be discussed in later chapters) but we do give some guidelines on how they can use and 
integrate the software assets from Figure 2 into their work practices.  
We first discuss some issues relating to the software architecture in Figure 2 and how it is updated and 
modified during the lifetime of the software organisation  that supports it.  We can set out some goals and 
objectives 
1. The software architecture is a living organism  in the sense that it evolves and improves as new 

functionality is added to it. All stakeholders can use it as their reference model. 

2. Many of the components in the software architecture are reusable assets in the sense that they can be 

used in other applications and not just in the one under discussion. For example, the components for 

random number generation and payoff descriptions are certainly reusable software components. 

3. The software architecture in Figure 2 – being an instance application of  a RAT category – can be used as a 

template for other applications in the same category. For example, the current architecture can be 

morphed to produce an architecture for a software system to price one-factor options using partial 

differential equations (PDE) and the finite difference method (FDM). In general, points 2 and 3 correspond 

to “communitywide reuse of architectural assets” as discussed in Bass, Clements and Kazman 1998. In 

particular, the Monte Carlo system in an exemplar system as a high-quality demonstration prototype. 

4. This point is a follow-on from points 2 and 3. Now we are interested in component-based product lines 

representing program families that we create using reusable components and architectures. A product line 

is a collection of systems sharing a managed set of features constructed from a common set of core 

software assets. These assets include a base architecture and a set of common and possibly tailorable 

components that populate it. The feedback loops of the architecture business cycle that feed back to the 

organisation reflect the impact on an organisation of having a product line.  

 

Closely related to this discussion is the challenge of estimating the effort (manhours) needed in order to create 
new software assets, integrate them into the architecture and deploy them in applications. Determining the 
number of hours to create a component can be estimated using the following formula from PERT (Project 
Estimation and Review Technique). To use the formula we need three estimates (uncertainty parameters) : 

 Parameter aa (most optimistic or shortest time to complete the task). 

 Parameter bb  (most likely or model time). 

 Parameter cc (most pessimistic or longest time). 

 
The values of these parameters should be estimated using a combination of historical data, experience and by 
interviewing experts. We model the estimation process by the triangular probability distribution with 
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parameters aa, bb  and cc. Finally, a statistical estimate of the expected time is given by the following weighted 

average: 
 
T = (a+ 4b + c) =6:T = (a+ 4b + c) =6: 

 
Everyone in the team can use this formula as a rough estimate. It is in any case better than ad-hoc guessing! 
 
12. Advantages and Benefits 
Having gone to the effort of designing and implementing a flexible Monte Carlo engine we can ask ourselves 
what the advantages are compared to other programming models. A general answer is that the approach in 
this chapter based on system decomposition, interfaces and delegates results in software that is easier to 
adapt and even reuse than solutions based on the procedural and object-oriented programming models. Some  
alternative solutions are: 
a) Procedural model (Clewlow and Strickland 1998, Webber 2011):  this style basically entails writing the 

software by creating a double loop that iterates over the number of simulations (outer loop) and over the 

number of time steps to approximate the SDE path (inner loop). The financial logic is implemented inside 

the inner loop. The resulting code is inflexible and only suitable for testing models and pricers. 

b) Object-oriented model (Duffy and Kienitz 2009, Webber 2011):  this is an attempt to adapt the software in 

step a). We use the standard modelling techniques such as encapsulation, composition and inheritance to 

promote the adaptability of the resulting software system. Maintainability and understandability become 

the main challenges with this approach. 

 
These solutions break down when we wish to extend the software to suit new requirements, for example: 

 Extending the software to support different kinds of products and models. 

 Achieving independence between models, products, market data and model parameters. 

 Interoperability with other software and hardware systems. 
 
In order to achieve these ends we need a combination of modern language features (such as interfaces and 
delegates) in combination with system architectures and patterns as described in Duffy 2004 and POSA 1996. 
In particular, the Layers pattern is widely-used to create virtual machines and an extra level of indirection 
between software modules.  An example of what we mean (calibration of SDEs) is discussed in exercise 2 of 
this chapter. 
 
13. Generalisations and Applications 
The architecture in Figure 2 is based on the generic RAT model from Duffy 2004 where we discuss the rationale 
for the model and we also give some examples and applications. In the context of computational finance it is 
relatively easy to adapt the model to suit other pricing problems, for example, lattice (binomial)  and PDE/FDM 
models. When commencing on such an analogical reasoning project, the following general issues should be 
borne in mind (Polya 1957): 

 Understand the problem: what is the output from the system and what is the input? 

 Devise a plan: find the connection between the input and output. In the current context, determine how 
output is created from input by a collection of loosely-coupled and cohesive subsystems as we saw in 
Figure 2. Create the system context diagram and determine what you implement and do not implement. 

 Carry out the plan: design and implement the solution in C#. You will not be able to implement all 
requirements in one iteration which means that the final solution will be the end product of a series of 
prototypes with ever-increasing functionality.  

 Looking back: examine the solution and determine if it satisfies the current requirements.  Additionally, can 
you reuse the design or code in other systems and applications? For example, it might be possible to use 
mesh generators, finite difference schemes, random number generators and payoff classes in other 
applications. 

 
These work practices demand that you take (and get!) the time to create software as a series of prototypes. 
This may not be possible due to organisational and political reasons. A discussion of these issues is outside the 
scope of this book. 
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14. Summary and Conclusions 
In this chapter we discussed the design and implementation of a software system to price one-factor option 
models using the Monte Carlo method. We employed a combination of design techniques that have been 
known for more than forty years, the author’s Domain Architectures and modern language features in the .NET 
Framework and C#. The role of the object-oriented programming model is of secondary importance, certainly 
as a modelling technique to decompose the system into loosely-coupled cohesive components.  
We discussed the problem by approaching the problem in a well-defined manner, starting by describing the 
financial problem and the closely related mathematical model. We then approximated this model using finite 
difference methods. Finally, we implemented these models. 
We recommend that you study and do the exercises in this chapter as they include discussions on extending 
the UML component diagram in Figure 2 to suit new requirements. 
 
15. Exercises and Projects 
1. (Interfaces versus delegates; interfaces with delegates) 

In section 4 we discussed how to implement SDEs in C# using the technique that is essentially specialisation 
(subtype polymorphism). This is the traditional object-oriented approach. Some of the well-known 
disadvantages are: 
a) Inflexible and difficult-to-maintain class hierarchies. 

b) In some cases we model roles as classes when we should model them as instances of classes to allow run-

time switching. 

c) Configuring systems that use classes from class hierarchies adds to complexity. 

 
The problem here is that the coupling between the classes and their methods is hard-wired. In order to add an 
extra level of indirection between classes and methods we employ delegates. In this sense we realise that we 
have a candidate example of the Bridge pattern. Answer the following questions: 
a) Create a class to model an SDE. It has member data for initial condition and expiry. It also implements the 

drift and diffusion functions using delegates. 

b) What are the advantages of this approach compared with the object-oriented approach in section 4? Do 

we need a class hierarchy? 

c) Now consider the third solution as show in Figure 3 which can be considered as a hybrid of the object-
oriented solution and the solution in part a) of this exercise. In particular, we implement the drift and 
diffusion functions by delegates and the SDE initial condition and expiry by member data in a single class 
Sde.  

d) What are the advantages of the approach in part c) compared to the object-oriented solution and the 
solution in part a) of this exercise? 
 

ISde

Sde Delegate
2

 
 

Figure 3 Alternative solution 

 
2. (Calibration of SDEs mini-project) 

The SDEs that we discuss in this chapter assume that we have an exact or analytic representation for the drift 
and diffusion functions in the SDE. In many cases however, these functions are not known exactly because 
they depend on unknown parameters that must be estimated in some way. In this case we write the SDE to 
show dependence on a parameter µµ  (this is usually an n-dimensional vector): 
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8
<

:

dXt = a(Xt; t; µ)dt+ b(Xt; t; µ)dWt; t ¸ 0

X0 = x0:

8
<

:

dXt = a(Xt; t; µ)dt+ b(Xt; t; µ)dWt; t ¸ 0

X0 = x0:

 

 
We assume that initial value x0x0 is deterministic and that x0;x1; : : : ; xnx0;x1; : : : ; xn is a sequence of historical observations 

from the above stochastic process that is sampled at the deterministic discrete time-points t0 < t1 < :: : < tnt0 < t1 < :: : < tn. 

For example, the one-factor Ornstein-Uhlenbeck (OU) process depends on three unknown parameters ¸; ¹¸; ¹ and 

¾¾: 

 

 

8
>>>>>>>><

>>>>>>>>:

dSt = ¸(¹¡ St)dt + ¾dWt

where

¸ = mean reversion rate

¹ = mean

¾ = volatility:

8
>>>>>>>><

>>>>>>>>:

dSt = ¸(¹¡ St)dt + ¾dWt

where

¸ = mean reversion rate

¹ = mean

¾ = volatility:

 

 
The process can be considered as a modification of the random walk in continuous time, or Wiener process, in 
which the properties of the process have been changed so that there is a tendency of the walk to move back 
towards a central location, with a greater attraction when the process is further away from the centre. The 
Ornstein–Uhlenbeck process can also be considered as the continuous-time analogue of the discrete-time 
AR(1) process. 
 
We now discuss some techniques to estimate the parameters in these SDEs. There are many techniques, some 
of which are: 
i) Maximum Likelihood Estimator (MLE) of the unknown parameters can be calculated if the transition 

density of the stochastic process is known.  

ii) Solve numerically the Kolmogorov partial differential equation satisfied by the transition density when the 

transition density is not known. 

iii) Least Squares Regression (LSR) in which we use time-series data or simulated data to find the unknown 

parameters. For example, for the OU process we assume the AR(1) form: 

 Si+1 = aSi + b + " (" is i:i:d:N(0; 1)):Si+1 = aSi + b + " (" is i:i:d:N(0; 1)): 

 
We use a linear least squares algorithm to find the parameters aa and bb  which then allow us to determine the 

parameters of the process. 
 
Answer the following questions: 
a) Determine how to accommodate the new requirement that the drift and diffusion functions can be 

computed in different ways. In other words, consider which of the solutions in exercise 1 will allow us to 

meet these requirements. In fact, you need to implement the Bridge pattern as shown in Figure 4. 

 

Exact

Sde SdeImpl
1

LSR MLE

 
 

Figure 4 Extra level of Indirection 



26 
 

 
b) Update the system context diagram in Figure 2. 

c) Implement classes that estimate the parameters in the above SDEs. Test you new code on the OU process 

for the Vasicek model using exact simulated data. 

d) It may useful to apply the Layers pattern to design and implement this problem. Pay particular attention to 

the following steps (as discussed in POSA 1996): 

i) The number of layers needed. 

ii) The services that a layer delivers to its upper layers. 

iii) Specify the interfaces for each layer. 

iv) Structure each layer (for example, design the classes that implement each layer). 

v) Decouple adjacent layers. 

vi) Design an error-handling strategy. 

e) Concerning data and control flow between the different layers, determine when you would use a push 

model using events or a pull model using methods. 

 
3.  (What would we do if we did not have a mediator?) 

Discuss the (many) advantages of using the Mediator patterns in your designs. 
 
In particular, answer the following questions: 
a) Consider the system architecture in Figure 2 if the mediator component were not present. What are the 

consequences for reusability and maintainability? 

b) Discuss how the Mediator pattern can help performance by caching data; some computations only need to 

be executed once but at the expense of extra memory consumption. 

c) The ability to use various mediator classes to suit different needs. Which factory patterns would you use to 

create the mediators? 

d) Discuss the following advantages and disadvantages of using a mediator: 

 It limits subclassing. 

 It decouples the participating components. 

 It simplifies object protocols. 

 It abstracts how objects cooperate. 

 It centralises control; mediators can become top-heavy. 
 

4. (Analogous Reasoning: from Monte Carlo Method to PDE Models) 

The objective of this extended exercise (it could become a medium-sized software project) is to take an 
existing design and implementation of a PDE/FDM model to price one-factor options and adapt it so that its 
architecture becomes similar to that in Figure 2. As preparation, you need to know the design rationale for the 
architecture in Figure 2 as well as the code base for the model in Figure 5. 
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Figure 5 Extending the framework: ADE scheme 

The assumption is that the model in Figure 2 can be adapted using analogous reasoning to use the software 
assets from Figure 5 to design a new PDE/FDM model. These are: 

 The software architecture. 

 The layering patterns that promote information hiding. 

 The components and their interfaces. 

 The data and control flow logic in the mediator components. 

 The analogies between the mathematics used to model SDEs and PDEs. 
 

Answer the following questions: 
a) What is the core process, that is the system output /input and the steps that link them? 

b) Find the major components and their responsibilities. 

c) Determine the inter-component provides/requires interfaces. 

d) Design PDE component using the Layers pattern. 

e) Design FDM component using the Layers pattern and possibly the Template Method pattern (hint: find 

variant and invariant behaviour between the components that implement various finite difference 

schemes). 

f) Determine a strategy for designing this system in a series of prototypes. Test each prototype. 

g) Use the ideas concerning the use of interfaces and base classes when designing FDM hierarchies for SDEs 
to similar hierarchies for PDEs. Concentrate on interface specifications and code reusability. Consider 
where the Template Method could be used. 


