
1

Application Design in C# The Monte Carlo Method for Option
Pricing

1. Introduction and Objectives
In this chapter we analyse, design and implement a software system to price one-factor financial options using
the Monte Carlo method. The programming language used is C# and many of the design principles are also
applicable to C++ and Java. For more background information on the Monte Carlo method and its applications
to computational finance, see Glasserman 2004, Duffy and Kienitz 2009. Although the focus is on software
design and implementation we do not shy away from dealing with the mathematical and financial foundations
relating to the Monte Carlo method. An understanding of this material is needed if we are to understand the
design rationale and the component interfaces. We need to explain a number of advanced topics and for this
reason we restrict our attention to one-factor models.

The prerequisites for understanding this chapter are knowledge of the following topics:

 Some acquaintance with stochastic differential equations (SDEs) and their numerical approximation by
one-step finite difference schemes. We shall model these mathematical concepts as classes with well-
defined responsibilities and interfaces. For background information, see Kloeden and Platen 1995.

 Some basic knowledge of plain, barrier, lookback and Asian options. The pricing modules will model some
of their essential properties.

 Knowledge of the software structure of a Monte Carlo engine (Duffy and Kienitz 2009). This structure will
form the core of a (mediator) class that coordinates the data and control flow between the various
modules and classes in the application.

 System/functional decomposition techniques that produce a system context diagram as well as loosely
coupled and cohesive subsystems and their responsibilities. Additionally, knowing that the software system
in this chapter is a special case of a Domain Architecture (Duffy 2004), namely an instance of a RAT
(Resource Allocation and Tracking) system will give us insights into the structure of the current application
(reasoning by analogy).

 Some high-priority design patterns, in particular next-generation Builder that we discussed in previous
chapters; in general, we do not need the traditional GOF patterns in this application because of the defined
process and system decomposition techniques that we employ. In fact, our design is more flexible in our
opinion than any design based on the traditional object-oriented programming model in combination with
the GOF patterns.

 Knowledge of some advanced C# and the .NET Framework, in particular: delegates, tuples, generics,
interfaces and the Standard Event Pattern.

 Knowledge of policy-based design and provides-requires interfaces. In particular, is it is important to
understand the concept of the service that a software module expects or requires from other modules.
These are concepts that are not present in the traditional object-oriented model.

We have discussed these topics in detail in previous chapters and we do not repeat them here.
We have a number of goals that we would like to realise in this chapter. First, we introduce a number of
techniques that help us design stable and flexible software systems. These techniques are more than 40 years
old but they are presented here in a new light. Second, we design an application from beginning to end to
show how these design principles work in practice. Finally, the lessons learned can be applied to other kinds of
problems.
We assume that the reader is familiar with the mathematical notation underlying stochastic differential
equations.

2. Problem Description
In the past we have addressed and solved this problem using the C++ object-oriented model in Duffy and
Kienitz 2009 as well as a new systems approach as shown in Figure 1.

2

ProgressSystem

MCSolver

MCMediator

(Evolver)

Boost Signals

IProgress

IData

FDMVisitorPayoff

RNG

Boost Function

IPayoff

IRandom

IVisitor

Class Method

Boost Signals

Template Parameters

Boost Random

STL Algorithms

Multiple Systems

Multiple Systems

SDE
ICoeff

Figure 1 Context diagram for Monte Carlo application

The classes are:

 RNG: the classes that generate random numbers (for example, Mersenne-Twister).

 SDE: the class that models stochastic differential equations.

 FDMVisitor: a family of classes, each one implementing a particular finite difference method. We have
used the classic GOF Visitor pattern.

 Payoff: classes that model payoffs, for example call and put options.

 MCSolver: the classes that implement the option pricing algorithms based on the underlying path
information from the FDMVisitor classes.

 MCMediator : the central coordinator that manages control flow and data flow between the other
modules in Figure 1.

 ProgressSystem: these are the modules that receive data from the running application, for example for
statistics gathering and reporting.

In this chapter we adapt and improve the design in Figure 1 and we implement it in C#.

3. Domain Architecture and System Design
We have examined Monte Carlo option pricing from an object-oriented approach based on design patterns in
C++ as discussed in Duffy and Kienitz 2009. The essential features of the design consisted of the use of classes
and class hierarchies to model mathematical concepts and the direct application of design patterns to help
promote the extendibility of the application. In this chapter however, we take a radically different approach by
decomposing the system into loosely-coupled and cohesive subsystems having well-defined interfaces (that
we need to define). The discovery of these subsystems is sometimes by trial and error and this can be a time-
consuming process. We do not discuss this process here but instead we summarise these ad-hoc efforts by
realising that the current application is an instance of or special case of a Resource Allocation and Tracking
(RAT) domain category that we have already discussed in this book and in Duffy 2004. The systems in this
category share the common characteristic that they process some kind of a request and produce some result
concerning the status of the request in space and time. The best example of a RAT instance (which, incidentally
was why we were able to formalise the RAT category) is a helpdesk system. The input is a user request and the
output is a report (or several reports) describing the status of the request in time and space. For example, a
user has placed an order to purchase a book online and she would like to know how long it will take to arrive
on the doorstep. In the same vein, we see the Monte Carlo engine as having a similar structure and data flow:
1. Determine the payoff and kind of option to be priced.

2. Choose the SDE that models the behaviour of the underlying asset or variable.

3. Determine how the SDE will be approximated using a finite difference scheme.

4. Configure system parameters and define the management system that stores the audit/performance trail

of the running engine.

3

5. Define the option pricers; for example, it is possible to configure the system to price several kinds of

options.

6. Configure the object network using the Builder pattern.

Builder

MIS

Pricer

Mediator

SdeSource RngFdm

Figure 2 New Context diagram for Monte Carlo engine

The context diagram for the current application is shown in Figure 2. It is a special case of the abstract context
diagram for applications that belong to the Resource Allocation and Tracking (RAT) category that we have
already discussed in detail in previous chapters. In general, RAT systems track requests in time and space and
they produce the corresponding reports on the status of these requests. In this case the request is to compute
the price of one-factor plain, barrier, lookback and Asian options using the Monte Carlo method. The request is
processed in a series of steps to produce the final output by the subsystems (modules) in the UML component
diagram in Figure 2:

 Source: The system containing the data relating to the request, for example price a plain one-factor option
with given market data. It contains data that is needed by other modules in Figure 2.

 Sde: The system that models stochastic differential equations (SDEs). In this case we model Geometric
Brownian Motion (GBM) and its variants. In particular, we are interested in modelling the drift and
diffusion of some underlying variable such as the stock price or interest rate, for example. In general, SDEs
do not have an analytic solution and approximate methods must be used.

 Fdm: The family of finite difference schemes that approximate the sdes in the Sde system. In this case we
use one-step difference schemes to advance the approximate solution of the sde from one time level to
the next time level until we reach the desired solution at the expiry. The finite difference schemes require
the services of a module that computes random numbers and standard Gaussian variates, that is variates
with mean zero and standard deviation one. We shall discuss native random number generators in .NET as
well as native C++ 11 classes that we wrap in Managed C++ and that can be called from C#.

 Pricer: This system contains classes to price one-factor options using the Monte Carlo simulation technique.
The classes process path information from the Mediator and each class processes this path information in
its own way. For example, for a plain option the pricer uses the path data at expiry, uses it to compute the
payoff, adds the result to a running total and then discounts the result to compute the option price.

 MIS: This is the statistics-gathering system that receives status information concerning the progress of
computation. For example, this system (if configured for the purpose) could display how many paths have
been processed at any given time.

 Builder: This system implements a configuration/creational pattern (based on GOF 1995 but much more
general) that creates and initialises the systems and their structural relationships in Figure 2. The newly-
created objects are encapsulated in .NET tuples which adds to the overall maintainability of the system.

 Mediator: This is the central coordinating system that manages the data and control flow in the system as
can be seen from Figure 2. It is the driver of the system as it were and it contains the state machine that
compute the paths of the SDE. It also informs the other relevant systems of changes that they need to
know about. It also plays the role of client in the Builder pattern (GOF 1995). The mediator can also contain
cached data.

 Rng: a system to generate random numbers.

4

Having determined the global data flow in the system and the subsystems (each one having a single well-
defined responsibility) we then need to determine the required-provided interfaces. These will be forthcoming
by studying the mathematics corresponding to the various subsystems and then mapping the mathematical
functionality to standardised C# interfaces. This will be the subject of the coming sections. For example, the C#
interface to describe the one-step finite difference schemes that we use is:

public interface IFdm

{ // Interface for one-step FDM methods for SDEs

 // Choose which SDE model to use

 ISde StochasticEquation

 {

 get;

 set;

 }

 // Advance solution from time level t[n] to time level t[n+1]

 double advance(double xn, double tn, double dt,

 double WienerIncrement, double WienerIncrement2);

}

Of course, we must specify all the interfaces in Figure 2 and we duly do so as we progress in this chapter.
We note that the design in Figure 2 is language-independent in the sense that it can be implemented in any
language that supports structures and interfaces. For example, a solution in C# could be easily ported to one in
Java (and vice versa) since these two languages are so alike. We can emulate C# interfaces by C++ abstract
classes and pure virtual member functions and again code porting from C# to C++ is relatively easy.
Furthermore, we can use delegates in C# or C++ 11 functions and Boost signals to avoid our having to create
class hierarchies with subtype polymorphism to create families of similar classes. In short, these issues belong
to the low-level detailed design stage of the software development process and we try to postpone such
decisions for as long as possible. A traditional object-oriented solution to the design in Figure 2 using C++ and
GOF design patterns is discussed in Duffy and Kienitz 2009.
We now discuss how we design the modules from Figure 2 in C#. There are several design choices and we
discuss them before selecting the most appropriate.

4. Stochastic Differential Equations (SDEs)
We are interested in modelling one-factor SDEs of the form (see Kloeden, Platen and Schurz 1997):

 dX = ¹(t;X)dt+ ¾(t;X)dWdX = ¹(t;X)dt+ ¾(t;X)dW

where

X ´ Xt ´ X(t) (stochastic process)

and

¹(t; x) 2 R (drift)

¾(t; x) 2 R (di®usion)

W ´Wt ´W (t) (Wiener process)

X ´ Xt ´ X(t) (stochastic process)

and

¹(t; x) 2 R (drift)

¾(t; x) 2 R (di®usion)

W ´Wt ´W (t) (Wiener process)

 (1)

In general, an SDE is uniquely specified if we define the drift, diffusion, Wiener increment and the initial
condition of the stochastic process X(t)X(t). Using the traditional object-oriented model this would entail creating

classes or class hierarchies to encapsulate the above information. This structural approach is taken in Duffy
and Kienitz 2009. In this chapter however, we take a different viewpoint by focusing on the minimal set of
abstract services that all sdes must deliver to clients:

 The drift function.

 The diffusion function.

 The interval [0; T][0; T] on which the sde is defined.

 The initial value X(0)X(0) of the stochastic process XX .

5

In this chapter we model the above group of characteristics as an interface. The interface contains abstract
methods and properties (notice that we have changed the order of the parameters compared to those in
equation (1)):

public interface ISde

{ // Standard one-factor SDE dX = a(X,t)dt + b(X,t)dW, X(0)given

 // dX = mu(X,t)dt + sig(X,t)dW

 double Drift(double x, double t); // a (mu)

 double Diffusion(double x, double t); // b (sig)

 // Some extra functions associated with the SDE

 double DriftCorrected(double x, double t, double B);

 double DiffusionDerivative(double x, double t);

 // Property to set/get initial condition

 double InitialCondition

 {

 get;

 set;

 }

 // Property to set/get time T

 double Expiry

 {

 get;

 set;

 }

}

The above methods and properties are abstract. They must be given a body in all classes that implement the
interface. In other words, we need to create a class each time we wish to define specialised behaviour and this
is a well-known process in the object-oriented paradigm. Run-time switching from an instance of one class to
an instance of another class that implements the interface is not possible. We discuss how to resolve this
problem (if it is a requirement) in exercise 1 below.
As first example, we examine the SDE that models Geometric Brownian Motion (GBM):

dXt = aXtdt + bXtWt a; b constant

Wt = W (t) (one-dimensional Brownian motion)

dXt = aXtdt + bXtWt a; b constant

Wt = W (t) (one-dimensional Brownian motion)

 (2)

or more generally

dSt = ¹(t)Stdt+ ¾(t)StdWt

where

¹(t) is the drift coe±cient

¾(t) is the di®usion coe±cient:

dSt = ¹(t)Stdt+ ¾(t)StdWt

where

¹(t) is the drift coe±cient

¾(t) is the di®usion coe±cient:

 (3)

In the case of constant drift and diffusion the exact solution of (3) is given by:

 St = S0 exp((¹¡
1

2
¾2)t+ ¾Wt):St = S0 exp((¹¡

1

2
¾2)t+ ¾Wt): (4)

The C# class that models SDE (2) is given by:

public class GBM : ISde

{ // Simple SDE

6

 private double mu; // Drift

 private double vol; // Constant volatility

 private double d; // Constant dividend yield

 private double ic; // Initial condition

 private double exp; // Expiry

 public GBM(double driftCoefficient, double diffusionCoefficient,

 double dividendYield, double initialCondition, double expiry)

 {

 mu = driftCoefficient;

 vol = diffusionCoefficient;

 d = dividendYield;

 ic = initialCondition;

 exp = expiry;

 }

 public double Drift(double x, double t) { return (mu - d) * x; }

 public double Diffusion(double x, double t) { return vol * x; }

 public double DriftCorrected(double x, double t, double B)

 {

 return Drift(x, t) - B * Diffusion(x, t) * DiffusionDerivative(x, t);

 }

 public double DiffusionDerivative(double x, double t)

 {

 return vol;

 }

 // Property to set/get initial condition

 public double InitialCondition

 {

 get

 {

 return ic;

 }

 set

 {

 ic = value;

 }

 }

 // Property to set/get time T

 public double Expiry

 {

 get

 {

 return exp;

 }

 set

 {

 exp = value;

 }

 }

}

This code is a straightforward implementation of the SDE (2) and we see that the drift and diffusion
parameters are initialised by providing appropriate arguments in the constructor.
Each new SDE can result in a new class and there could be some opportunity for code optimisation and
refactoring in the sense that we could design a C# class that models a range of SDEs but this issue is outside
the scope of this chapter. It is an optimisation step to a certain extent.

7

5. Numerical Approximation of SDEs
In this section we introduce the finite difference method (FDM) and we apply it to finding approximate
solutions of SDEs. We define the notation that we use in this and subsequent chapters.

The first step is to replace continuous time by discrete time. To this end, we divide the interval [0; T][0; T] (where TT

is the expiry date) into a number of subintervals. We define N + 1N + 1 mesh points as follows:

 0 = t0 < t1 < :: < tn < tn+1 < :: < tN = T:0 = t0 < t1 < :: < tn < tn+1 < :: < tN = T:

In this case we define a set of subintervals (tn; tn+1)(tn; tn+1) of size ¢tn ´ tn+1¡ tn;0· n·N ¡1¢tn ´ tn+1¡ tn;0· n·N ¡1. In general,

we speak of a non‐uniform mesh when the sizes of the sub‐intervals are not necessarily the same. However we
consider a large class of finite difference schemes where the N subintervals have the same size (we then speak

of a uniform mesh), namely ¢t = T=N¢t = T=N .

Having defined how to subdivide [0; T][0; T] into subintervals we are now ready to motivate our finite difference

schemes; the simplest example is the scalar linear SDE with constant coefficients:

dX = aXdt+ bXdW; a; b constant

X(0) = A:

dX = aXdt+ bXdW; a; b constant

X(0) = A:
 (5)

Regarding notation, we do not show the dependence of variable XX on tt and when we do wish to show this

dependence we prefer to write X = X(t)X = X(t) instead of the form XtXt.

We now discuss one-step finite difference schemes to approximate to the solution of general one-factor SDEs.
To this end, we take the model SDE:

dX(t) = ¹(X(t))dt+ ¾(X(t))dW(t) 0 < t · T

X(0) = A:

dX(t) = ¹(X(t))dt+ ¾(X(t))dW(t) 0 < t · T

X(0) = A:
 (6)

We discretise the interval [0, T] into N subintervals and we adopt the notation:

 ¹n ´ ¹(Xn); ¾n = ¾(Xn) n = 0; ::;N; ¢Wn =
p
¢tZ; Z »N(0;1):¹n ´ ¹(Xn); ¾n = ¾(Xn) n = 0; ::;N; ¢Wn =

p
¢tZ; Z »N(0;1):

Some schemes are:

 Explicit Euler:
 Xn+1 =Xn +¹n¢t+¾n¢Wn:Xn+1 =Xn +¹n¢t+¾n¢Wn: (7)

 Semi‐implicit Euler:

Xn+1 = Xn + [®¹n+1 + (1¡ ®)¹n]¢t+ ¾n¢Wn

with special cases

® = 1
2
(Trapezoidal)

® = 1 (Backward Euler):

Xn+1 = Xn + [®¹n+1 + (1¡ ®)¹n]¢t+ ¾n¢Wn

with special cases

® = 1
2
(Trapezoidal)

® = 1 (Backward Euler):

 (8)

 Heun:

Xn+1 = Xn + 1
2
[F1 + F2]¢t + 1

2
[G1 + G2]¢Wn

where

F (x) ´ ¹(x)¡ 1
2
¾

0

(x)¾(x)

¾
0

(x) ´ d¾
dx

F1 = F (Xn); G1 = ¾(Xn)

F2 = F (Xn + F1¢t + G1¢Wn)

G2 = ¾(Xn + F1¢t + G1¢Wn):

Xn+1 = Xn + 1
2
[F1 + F2]¢t + 1

2
[G1 + G2]¢Wn

where

F (x) ´ ¹(x)¡ 1
2
¾

0

(x)¾(x)

¾
0

(x) ´ d¾
dx

F1 = F (Xn); G1 = ¾(Xn)

F2 = F (Xn + F1¢t + G1¢Wn)

G2 = ¾(Xn + F1¢t + G1¢Wn):

 (9)

 Milstein:

 Xn+1 = Xn +¹n¢t+ ¾n¢Wn + 1
2
[¾

0

¾]n((¢Wn)
2 ¡¢t):Xn+1 = Xn +¹n¢t+ ¾n¢Wn + 1

2
[¾

0

¾]n((¢Wn)
2 ¡¢t): (10)

8

 Derivative‐free:

Xn+1 = Xn + F1¢t + G1¢Wn + [G2 ¡G1]¢t¡1=2 (¢Wn)2¡¢t

2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn + G1¢t1=2):

Xn+1 = Xn + F1¢t + G1¢Wn + [G2 ¡G1]¢t¡1=2 (¢Wn)2¡¢t

2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn + G1¢t1=2):

 (11)

 First‐order Runge Kutta with Ito coefficient (FRKI):

Xn+1 = Xn + F1¢t +G2¢Wn + [G2 ¡G1]¢t1=2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn +
G1(¢Wn¡¢t1=2)

2
):

Xn+1 = Xn + F1¢t +G2¢Wn + [G2 ¡G1]¢t1=2

where

F1 = ¹(Xn); G1 = ¾(Xn)

G2 = ¾(Xn +
G1(¢Wn¡¢t1=2)

2
):

 (12)

We now define an interface that describes the sde that the finite difference scheme is approximating and the
abstract method that describes how to compute the approximate solution at time level n+1 in terms of the
known solution at time level n:

public interface IFdm

{ // Interface for one-step FDM methods for SDEs

 // Choose which SDE model to use

 ISde StochasticEquation

 {

 get;

 set;

 }

 // Advance solution from level t[n] to level t[n+1]

 double advance(double xn, double tn, double dt,

 double WienerIncrement, double WienerIncrement2);

}

We see that clients of this interface and of the classes that implement the interface must provide two Wiener

increment values as input to the advance()method. This design decision ensures that the classes that
implement the various finite difference schemes can focus on the time-marching aspects of the schemes
without having to generate random numbers themselves in the process. To this end, we have several
dedicated interfaces and classes for generating random numbers that we discuss in the next section.

We now define a base class from which all specific classes are derived. It contains structure and functionality
that is common to all derived classes, for example the related sde and the discrete mesh array:

public abstract class FdmBase : IFdm

{

 protected ISde sde;

 public int NT; // Number of subdivisions

 public double[] x; // The mesh array

 public double k; // Mesh size

 public FdmBase(ISde stochasticEquation, int numSubdivisions)

 {

 sde = stochasticEquation;

 NT = numSubdivisions;

 k = sde.Expiry / (double)NT;

9

 x = new double[NT + 1];

 // Create the mesh array

 x[0] = 0.0;

 for (int n = 1; n < x.Length; n++)

 {

 x[n] = x[n - 1] + k;

 }

 }

 public ISde StochasticEquation

 {

 get

 {

 return sde;

 }

 set

 {

 sde = value;

 }

 }

 public abstract double advance(double xn, double tn, double dt,

 double WienerIncrement, double WienerIncrement2);

}

We see a pattern emerging here: first, at the highest level we define by an interface the common abstract
services that (unspecified) components implement. In this case we specify the methods that are common to all
one-factor finite difference methods, namely defining which SDE they are approximating and the formula that
advances the approximate solution from level nn to level n+1n+1. Secondly, we create a base class that

implements the interface’s methods (either by redeclaring its methods or implementing them). This base class
contains the functionality common to all classes that implement finite difference schemes such as the mesh
array and the step size, for example. It can also contain methods that are shared by its derived classes. In fact,
this is where the application of the Template Method pattern (GOF 1995) is most appropriate in order to
promote code reuse and to avoid costly and damaging refactoring activities later. In short, the interface
encsapsulates pure behaviour while the base class contains structural information relevant to all of its
specialisations. Of course, we are referring to the ISA (Gen-Spec) relationship between classes.
The classes that implement specific finite difference schemes are reasonably lightweight and stateless in
general. For example, these classes have no functionality for generating random numbers (for example) as
these are created by other classes and used as arguments in the method advance(). Of course , some classes
will have their own specific member data.

As a first example, the simplest finite difference scheme is probably the explicit Euler scheme (7). The
corresponding code is:

public class EulerFdm : FdmBase

{

 public EulerFdm(ISde stochasticEquation, int numSubdivisions)

 : base(stochasticEquation, numSubdivisions) { }

 public override double advance(double xn, double tn, double dt,

 double normalVar, double normalVar2)

 {

 return xn + sde.Drift(xn, tn) * dt

 + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar;

 }

}

10

Another popular scheme due to Milstein (10) is:

public class MilsteinFdm : FdmBase

{

 public MilsteinFdm(ISde stochasticEquation, int numSubdivisions)

 : base(stochasticEquation, numSubdivisions) { }

 public override double advance(double xn, double tn, double dt,

 double normalVar, double normalVar2)

 {

 return xn + sde.Drift(xn, tn) * dt

 + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar

 + 0.5 * dt * sde.Diffusion(xn, tn)

 * sde.DiffusionDerivative(xn, tn) * (normalVar * (dynamic)normalVar - 1.0);

 }

}

As final example, we discuss the modified predictor-corrector method:

Xn+1 = Xn +
n
®¹¯(

~Xn+1) + (1¡ ®)¹¯(Xn)
o
¢t

+
n
¯¾(~Xn+1) + (1¡ ¯)¾(Xn)

o
¢Wn; n ¸ 0

Xn+1 = Xn +
n
®¹¯(

~Xn+1) + (1¡ ®)¹¯(Xn)
o
¢t

+
n
¯¾(~Xn+1) + (1¡ ¯)¾(Xn)

o
¢Wn; n ¸ 0

 (13)

where the corrector drift function is defined by:

 ¹¯(x) = ¹(x)¡ ¯¾(x)
@¾

@x
(x):¹¯(x) = ¹(x)¡ ¯¾(x)

@¾

@x
(x): (14)

Furthermore, you can customise the scheme to support different levels of implicitness and explicitness in the
drift and diffusion terms:

A. Fully explicit(® = ¯ = 0)

B. Fully implicit(® = ¯ = 1)

C. Implicit in drift explicit in di®usion (® = 1;¯ = 0)

D. Symmetric(® = ¯ = 1=2)

A. Fully explicit(® = ¯ = 0)

B. Fully implicit(® = ¯ = 1)

C. Implicit in drift explicit in di®usion (® = 1;¯ = 0)

D. Symmetric(® = ¯ = 1=2)

The code that implements this scheme is:

public class ModifiedPredictorCorrectorFdm : FdmBase

{ // PC using adjusted drift

 private dynamic A, B, VMid;

 public ModifiedPredictorCorrectorFdm(ISde stochasticEquation,

 int numSubdivisions, double a, double b)

 : base(stochasticEquation, numSubdivisions)

 {

 A = a;

 B = b;

 }

 public override double advance(double xn, double tn, double dt,

 double normalVar, double normalVar2)

 {

 // Euler for predictor

 VMid = xn + sde.Drift(xn, tn) * dt

 + sde.Diffusion(xn, tn) * Math.Sqrt(dt) * normalVar;

11

 // Modified Trapezoidal rule

 double driftTerm = (A * sde.DriftCorrected(VMid, tn + dt, B)

 + ((1.0 - A) * sde.DriftCorrected(xn, tn, B))) * dt;

 double diffusionTerm = (B * sde.Diffusion(VMid, tn + dt)

 + ((1.0 - B) * sde.Diffusion(xn, tn))) * Math.Sqrt(dt)

 * normalVar;

 return xn + driftTerm + diffusionTerm;

 }

}

It is clear that this method is more computationally intensive than the Euler or Milstein methods because of
the greater number of function calls.

6. Random Number Generation
One of the tools that is needed in a Monte Carlo simulator is a suitable random number generator. It is not
our intention to discuss this in great detail here but we do discuss some mathematical background, code to
compute pseudo-random numbers and how this code fits into the current framework. In general we need to
first generate uniform random numbers on the unit interval and based on these numbers we generate normal
variates. We first describe two methods for generating normal variates.

6.1 Polar Marsaglia Method
This method uses the fact that if the random variable UU is U (0; 1)U (0; 1) then the random variable VV defined by
V = 2U ¡ 1V = 2U ¡ 1 is U(¡1; 1)U(¡1; 1). We now choose two variables defined by:

 Vj = 2Uj ¡ 1; Uj » U(0; 1); j = 1; 2:Vj = 2Uj ¡ 1; Uj » U(0; 1); j = 1; 2:

Then we define:

 W = V 2
1 + V 2

2 · 1; W » U(0;1):W = V 2
1 + V 2

2 · 1; W » U(0;1):

We keep trying with different values until the above inequality is satisfied. Continuing, we define the
intermediate value:

 Y =
p
¡2 log(W)=W:Y =

p
¡2 log(W)=W:

Finally, the pair of values defined by:

 Nj = VjY; j = 1; 2Nj = VjY; j = 1; 2

are two standard normally (Gaussian) distributed random variables, and we are done.

6.2 Box-Muller Method
This method is based on the observation that if rr and '' are two independent U (0; 1)U (0; 1) random variables then

the variables:

N1 =

p
¡2 log r cos(2¼')

N2 =
p
¡2 log r sin(2¼'):

N1 =
p
¡2 log r cos(2¼')

N2 =
p
¡2 log r sin(2¼'):

are two independent standard Gaussian random variables.

We now show how we have programmed these methods in C#. We have a number of choices for generating
uniform numbers:

 Using the .NET Random class.

 Using the .NET RandomNumberGenerator.

 Using an external C++ library that we can use from C# by means of the Managed C++ language.

12

To this end, we first discuss the design of the subsystem for generating random numbers. What do we need?
The answer is a random number. The top-level specifications are:

public interface IRng

{

 double GenerateRn();

}

public abstract class Rng : IRng

{

 public abstract double GenerateRn();

}

All concrete classes for generating random numbers are derived from Rng , two of which are:

public class PolarMarsagliaNet : Rng

{

 private Random rand;

 public PolarMarsagliaNet() { rand = new Random();}

 public override double GenerateRn()

 {

 double u, v, S;

 do

 {

 u = 2.0 * rand.NextDouble() - 1.0;

 v = 2.0 * rand.NextDouble() - 1.0;

 S = u * u + v * v;

 }

 while (S >= 1.0);

 double fac = Math.Sqrt(-2.0 * Math.Log(S) / S);

 return u * fac;

 }

}

and

public class BoxMullerNet : Rng

{

 private Random rand;

 public BoxMullerNet() { rand = new Random(); } // Seed is from system clock

 double U1, U2;

 public override double GenerateRn()

 {

 // U1 and U2 should be independent uniform random numbers

 U1 = rand.NextDouble(); // In interval [0,1)

 U2 = rand.NextDouble(); // In interval [0,1)

 // Box-Muller method

 return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2);

 }

}

These classes generate normal variates for the Polar Marsaglia and Box-Muller method, respectively. In both
cases we use the .NET Random class to generate the related uniform random numbers. We have not tested if
this class is suitable for a production Monte Carlo simulator, in which case we may decide an external C++

13

library, for example is more appropriate. We take the example of the Box-Muller method with a Managed C++
generator (in this case developed by Thijs van den Bergh):

public class BoxMullerSitmo : Rng

{

 private SitmoWrapper.ManagedWrapper rand;

 public BoxMullerSitmo() { rand = new SitmoWrapper.ManagedWrapper(); }

 private double U1, U2;

 public override double GenerateRn()

 {

 // U1 and U2 should be independent uniform random numbers

 U1 = rand.NextDouble(); // In interval [0,1)

 U2 = rand.NextDouble(); // In interval [0,1)

 // Box-Muller method

 return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2);

 }

}

In this case the C# code delegates to a Managed C++ wrapper class. We use it as a black box.
Finally, we can avoid code duplication in the above classes by using plug-in methods (almost a Strategy
pattern!). Thus, instead of hard-coded uniform random number generators we use a delegate with the
appropriate signature:

public delegate double RngDelegate();

The class with an embedded delegate is:

public class BoxMullerII : Rng

{ // RNG with embedded delegate

 private RngDelegate rand;

 private double U1, U2;

 public BoxMullerII(RngDelegate randomGenerator)

{ rand = randomGenerator; }

 public override double GenerateRn()

 {

 // U1 and U2 should be independent uniform random numbers

 U1 = rand(); // In interval [0,1)

 U2 = rand(); // In interval [0,1)

 // Box-Muller method

 return Math.Sqrt(-2.0 * Math.Log(U1)) * Math.Cos(2.0 * 3.1415159 * U2);

 }

}

The advantage of this approach is that we can use the class with any method that has the same signature as
that of RngDelegate, for example:

// RNG using delegates

Random rngNet = new Random();

RngDelegate rand = rngNet.NextDouble;

IRng rng = new BoxMullerII(rand);

Console.WriteLine("Rng via delegate {0}", rng.GenerateRn());

14

7. Pricers
We now describe the final component in the architecture, that is the component to price one-factor options
using the Monte Carlo method. In this section we focus on plain options in order to motivate the software
design. The interface specification is:

public interface IPricer

{

 void ProcessPath(ref double[] arr); // The path from the evolver

 void PostProcess(); // Finish off computations

 double DiscountFactor(); // (simple) discounting function

 double Price(); // Computed option price

}

For the current case these methods are sufficient but for more complicated cases we will need to create a
complete new system. At the next level we define an abstract class:

// The payoff function

public delegate double Payoff(double underlying);

public abstract class Pricer : IPricer

{

 public abstract void ProcessPath(ref double[] arr); // Create a single path

 public abstract void PostProcess(); // Notify end of simulation

 public abstract double DiscountFactor(); // Discounting

 public abstract double Price(); // Option price

 public Payoff m_payoff;

 protected Func<double> m_discounter;

 public Pricer(Payoff payoff, Func<double> discounter)

 {

 m_payoff = payoff;

 m_discounter = discounter;

 }

}

The code for a plain one-factor pricer is:

// Pricing Engines

public class EuropeanPricer : Pricer

{

 private dynamic price;

 private dynamic sum;

 private int NSim;

 public EuropeanPricer(Payoff payoff, Func<double> discounter)

 : base(payoff, discounter) { price = sum = 0.0; NSim = 0; }

 public override void ProcessPath(ref double[] arr)

 { // A path for each simulation/draw

 // Sum of option values at terminal time T

 sum += m_payoff(arr[arr.Length - 1]); NSim++;

 }

 public override double DiscountFactor()

 { // Discounting

 return m_discounter();

 }

15

 public override void PostProcess()

 {

 Console.WriteLine("Compute Plain price"); price = DiscountFactor() * sum / NSim;

 Console.WriteLine("Price: {0}, {1}", price, NSim);

 }

 public override double Price()

 {

 return price;

 }

}

We have provided an exercise on how to design a general pricer system.

8. System Configuration and Interface Specification
Having documented, designed and implemented the software modules and their interfaces from Figure 2 we
must now decide how to instantiate them. In plain terms, we need to decide which specific classes will
implement these interfaces, we instantiate the classes and then we add them to the end-product which is the
network of objects in Figure 2. For example, we may wish to price a barrier option based on GBM using the
Euler method. Furthermore, we chose to generate random numbers using the Box-Muller method in
combination with the .NET Random class. To this end, we must instantiate the appropriate classes and
configure the software system with these choices in mind. More generally, we need to execute the following
steps:
1. Initialise each of the modules and their data in Figure 2.
2. Connect the modules based on the provides-requires model. It is at this stage that we must decide whether

to model data flow using events (push model) or by methods (pull model).
3. Start the application.

Since the system is structured as a collection of cohesive and loosely-coupled subsystems we see that it is
relatively easy to configure it. We may need to introduce a number of new classes and functions that allow the
system to communicate with external hardware and software systems, for example:
1. Data sources containing settings, default values and user preferences (for example, databases, text files,

user interfaces such as the console and graphical user interfaces).
2. Hardware drivers as assemblies and DLLs. For example, we have encapsulated a C++ random number

generator that we stored in an assembly and that can be loaded into memory at run-time and whose
functionality can used by the C# code.

In the interest of completeness, we should document the emergence of these new low-level classes by
extending Figure 2 to form a design-level system context diagram.

One of the objectives of this chapter is to create a customisable software system to price one-factor options
using the Monte Carlo method. The method should support a range of SDEs, finite difference methods and
random number generators. These are the abstractions that we create in the Builder pattern that we use to
configure the most important modules in Figure 2. We have not included the pricer classes in this builder
because doing so would make it less reusable. Instead, the responsibility for their creation takes places
elsewhere in the code. This tactic also avoids our having to create and maintain an unwieldy mega-builder. To
this end, we use a generic delegate to specify the interface for the builder:

// Generic delegate for a MC builder: T1 == Sde, T2 == Fdm, T3 == IRng

public delegate Tuple<T1, T2, T3> Builder<T1, T2, T3>();

We thus see that the delegate has three generic parameters that will be instantiated as shown in the above
commented line. In particular, we create a builder class that creates the SDE, FDM and RNG components in
Figure 2. It uses the Console to elicit input from the user. Furthermore, the builder uses and needs the
parameters corresponding to well-known SDEs which results in part of the code being hard-wired but we can
resolve this issue at a later stage. The builder class’ parameters have generic constraints defined on them;
furthermore, this class has methods for creating the SDE, FDM and RNG as well as a factory method to return
all three parts (the product) that conforms to the signature of the above delegate type:

16

public class MCBuilder<S, F, R>

 where S : ISde

 where F : IFdm

 where R : IRng

{ // Build the full UML model in this builder

 // Next version .. encapsulate better

 private double r;

 private double v;

 private double d;

 private double IC;

 private double T;

 private double beta;

 // Constructor (data important at this stage)

 public MCBuilder(Tuple<double, double, double, double, double, double> data)

 {

 r = data.Item1;

 v = data.Item2;

 d = data.Item3;

 IC = data.Item4;

 T = data.Item5;

 beta = data.Item6;

 }

 public Tuple<S, F, R> Parts(S sde, F fdm, R rng)

 { // V1, parts initialised from the outside

 return new Tuple<S, F, R>(sde, fdm, rng);

 }

 public Tuple<ISde, FdmBase, IRng> Parts()

 { // V2, parts initialised from the inside

 // Get the SDE

 ISde sde = GetSde();

 IRng rng = GetRng();

 FdmBase fdm = GetFdm(sde);

 return new Tuple<ISde, FdmBase, IRng>(sde, fdm, rng);

 }

 private ISde GetSde()

 {

 Console.WriteLine("Create SDE");

 Console.Write("1. GBM, 2. CEV ");

 int c = Convert.ToInt32(Console.ReadLine());

 if (c == 1)

 { // GBM

 return new GBM(r, v, d, IC, T);

 }

 else

 {

 return new CEV(r, v, d, IC, T, beta);

 }

 }

 private IRng GetRng()

 {

 Console.WriteLine("Create RNG");

 Console.WriteLine("1. Box-Muller .Net 2. Polar Marsaglia Sitmo”);

17

 // more …

 int c = Convert.ToInt32(Console.ReadLine());

 IRng rng;

 switch (c)

 {

 case 1:

 rng = new BoxMullerNet();

 break;

 case 2:

 rng = new PolarMarsagliaSitmo();

 break;

 // more …

 default:

 rng = new BoxMullerSitmo();

 break;

 }

 return rng;

 }

 private FdmBase GetFdm(ISde sde)

 {

 Console.WriteLine("Create FDM");

 Console.WriteLine("1. Euler, 2. Extrapolated Euler, 3. Milstein ");

 // more

 int c = Convert.ToInt32(Console.ReadLine());

 FdmBase fdm;

 int NT = 500;

 Console.Write("How many NT? ");

 NT = Convert.ToInt32(Console.ReadLine());

 double a, b;

 switch(c)

 {

 case 1:

 fdm = new EulerFdm(sde, NT);

 break;

 case 2:

 fdm = new ExtrapolatedEulerFdm(sde, NT);

 break;

 case 3:

 fdm = new MilsteinFdm(sde, NT);

 break;

 // more…

 default:

 fdm = new ExtrapolatedEulerFdm(sde, NT);

 break;

 }

 return fdm;

 }

18

}

 public static Builder<ISde, FdmBase, IRng> ChooseBuilder(int n)

 {// Factory method to choose your builder

 double r = 0.08;

 double v = 0.3;

 double div = 0.0;

 double IC = 60.0;

 double T = 0.25;

 double K = 65.0;

 double beta = 1.0;

 Tuple<double, double, double, double, double, double> data = new Tuple<double,

 double, double, double, double, double>

 (r, v, div, IC, T, beta);

 MCBuilder<ISde, FdmBase, IRng> builder = new MCBuilder<ISde, FdmBase, IRng>(data);

 return builder.Parts;

 }

This builder class is not as general as we would like and in future versions we would like to have different kinds
of builders for different kinds of stakeholders. To this end , we create a factory method that allows us to
choose a suitable builder based on a decision and we have encapsulated this decision in a method:

// Choose which builder you want

public static Tuple<ISde, FdmBase, IRng> ChooseBuilder(int n)

{// Factory method to choose your builder

double r = 0.08;

double v = 0.3;

double div = 0.0;

double IC = 60.0;

double T = 0.25;

double K = 65.0;

double beta = 1.0;

MCBuilder<ISde, FdmBase, IRng> builder;

MCDefaultBuilder<ISde, FdmBase, IRng> builder2;

int c = 1;

Console.Write("1. MCBuilder, 2. Default Builder ");

c = Convert.ToInt32(Console.ReadLine());

if (1 == c)

{

 Console.Write("Chosen 1. MCBuilder ");

 Tuple<double, double, double, double, double, double> data = new

 Tuple<double, double, double, double, double, double>

 (r, v, div, IC, T, beta);

 builder = new MCBuilder<ISde, FdmBase, IRng>(data);

 return builder.Parts();

}

 else

 {

 Console.Write("Chosen 2. MCDefaultBuilder ");

 builder2 = new MCDefaultBuilder<ISde, FdmBase, IRng>();

 return builder2.Parts();

 }

}

19

We can then call this method in the Main() method which adds to the readability and maintainability of the
code:

Tuple<ISde, FdmBase, IRng> factory = ChooseBuilder(choice);

In Main() the product that the builder creates is given by the following code:

// Choose which builder to use

int choice = 1;

Tuple<ISde, FdmBase, IRng> parts2 = ChooseBuilder(choice);

9. Putting it All Together: The Mediator
After having designed the software components that we have already discussed in this chapter we need to
assemble them to form a working system. This process is particularly easy in the current case because we have
a toolkit of loosely-coupled and cohesive components that will be managed by a planning and coordination
component called a mediator. Instead of assembling the components in an ad-hoc manner we see that the
mediator becomes a more explicit component in the overall software architecture. Mediators have sufficient
semantic complexity and runtime autonomy (persistence) and these properties allow them to play the role of
first-class entities in a software architecture (Bass, Clemens and Kazman 1998). The Mediator pattern is
described in GOF 1995. We have extended this pattern as already discussed in previous chapters . We recall
some of the attention points to be addressed:
1. Create the components in Figure 2 that the mediator needs (these components are created by a builder

that the mediator is presented with).
2. Determine the provides/requires interfaces between the mediator and the other components.
3. Design the data flow, control flow and state machine associated with the mediator.

An important remark is in order here: the mediator’s main responsibility is to coordinate the other
components in the system. It contains no code for object creation nor does it communicate with object
factories. This improves its maintainability.
We design the mediator class to reflect the component diagram in Figure 2. It has a constructor that accepts a
tuple containing the components that it needs and it has two public events that define the communication
with the pricer components (we shall see how to assign these events in the next section):

// Events

public delegate void PathEvent<T> (ref T[] path); // Send a path array

public delegate void EndOfSimulation<T>(); // No more paths

Finally, the mediator has a method called start()that is responsible for path generation:

public class MCMediator

{

 // Three main components

 private ISde sde;

 private FdmBase fdm;

 private IRng rng;

 // Other MC-related data

 private int NSim; // Number of simulations

 private double[] res; // Generated path per simulation

 // Event notification

 public event PathEvent<double> path; // Signal to the Pricers

 public event EndOfSimulation<double> finish; // All paths are complete

 public MCMediator(Tuple<ISde, FdmBase, IRng> parts, int numberSimulations)

 {

 sde = parts.Item1;

 fdm = parts.Item2;

 rng = parts.Item3;

20

 NSim = numberSimulations;

 res = new double[fdm.NT];

 }

 public void start()

 { // Main event loop for path generation

 double VOld, VNew;

 for (long i = 1; i <= NSim; ++i)

 { // Calculate a path at each iteration

 if ((i / 5000) * 5000 == i)

 { // Give status after a given numbers of iterations

 Console.WriteLine(i);

 }

 VOld = sde.InitialCondition; res[0] = VOld;

 for (int n = 1; n < res.Length; n++)

 { // Compute the solution at level n+1

 VNew = fdm.advance(VOld, fdm.x[n-1], fdm.k,

 rng.GenerateRn(), rng.GenerateRn());

 res[n] = VNew; VOld = VNew;

 }

 // Send path data to the Pricers

 path(ref res);

 }

 finish(); // Signal to pricers to finish up

 }

}

The main advantage is that the Mediator pattern encapsulates how a set of components interact. It promotes
loose coupling by keeping components from explicitly referring to each other.

9.2 The Relationship with Bridge and Adapter (Wrapper) Patterns

The mediator is the central component in Figure 2. It communicates with other components using
provides/requires interfaces. The components implementing these interfaces may have multiples layers of
indirection and we should try to flag as many assumptions as possible that components make about their
environment. In general, we wish to avoid or mitigate interface mismatch between software layers and
components. We wish to use the components in a variety of different but currently unknown contexts. It is
important to design with change in mind and to adopt a disciplined approach from the earliest design stages.
To this end, we can use two patterns that complement Mediator (see GOF 1995):

 Bridge: we decouple a component from its implementation so that the two can vary independently.
Bridges address specific issues such as translation between different protocols and more generally by
promoting information hiding and the resultant inter-component interchangeability. Bridges are needed
when we wish to support legacy software.

 Adapter (Wrapper): an adapter is a component that converts the interface of a component into another
interface that clients expect. Adapters let components work together that would not normally be able to
communicate because of incompatible interfaces.

We give a number of exercises in this chapter that discuss how to apply these patterns to the current Monte
Carlo simulator.

21

10. Examples and Test Cases
We now take a test case to show how to price a numbers of options and show how the components work
together. In general, the following steps are executed and they can be seen as forming a pattern:

 Initialise the option data:

double r = 0.08;

double v = 0.3;

double div = 0.0;

double IC = 60.0;

double T = 0.25;

double K = 65.0;

double beta = 1.0;

 Choose the builder that creates the components in Figure 2:

// Choose which builder to use

int choice = 1;

Tuple<ISde, FdmBase, IRng> parts2 = ChooseBuilder(choice);

 Create the mediator (central component in the application):

int NSim = 1000000;

Console.Write("How many NSim? ");

NSim = Convert.ToInt32(Console.ReadLine());

MCMediator mcp = new MCMediator(parts2, NSim);

 Create the payoff functions:

// Use lambda functions to define payoffs and discounting

Payoff payoff = x => Math.Max(0.0, K - x);

// Payoff payoff = x => Math.Max(0.0, x - K);

Func<double> discounter = () => Math.Exp(-r * T);

 Create prices and link them to the mediator so that they become the recipients of events from the
mediator:

// Manually create pricers

IPricer op = new EuropeanPricer(payoff, discounter);

IPricer op2 = new BarrierPricer(payoff, discounter);

IPricer op3 = new AsianPricer(payoff, discounter);

// Define slots for path information

mcp.path += op.ProcessPath;

mcp.path += op2.ProcessPath;

mcp.path += op3.ProcessPath;

mcp.path += op4.ProcessPath;

// Signal end of simulation

mcp.finish += op.PostProcess;

mcp.finish += op2.PostProcess;

mcp.finish += op3.PostProcess;

mcp.finish += op4.PostProcess;

 Run the program and examine the output:

// Create and start the stopwatch

Stopwatch stopWatch = new Stopwatch();

stopWatch.Start();

22

mcp.start();

stopWatch.Stop();

// Get the elapsed time as a TimeSpan value.

TimeSpan ts = stopWatch.Elapsed;

// Format and display the TimeSpan value.

string elapsedTime = String.Format("Elapsed time {0:00}:{1:00}:{2:00}.{3:00}",

 ts.Hours, ts.Minutes, ts.Seconds, ts.Milliseconds / 10);

Console.WriteLine(elapsedTime, "RunTime");

We are finished! This code can form the basis for more general solutions.

11. The Project Management and Software Architecture Perspectives
Figure 2 represents the architecture of the software system that we have discussed in this chapter. It did not
originate in a big bang process as it were but it is a special case of a domain-independent model that the
author has developed and applied to create applications (see Duffy 2004). Furthermore, prior to having
developed the solution to Figure 2 we had already written a similar prototype in C++ to price options using the
Monte Carlo Method. We can conclude that the system is reasonably stable and we use it as the common
reference model that all the members of the software team use in order to communicate with each other. In
this way we hope to bridge the communication gap between the different project stakeholders. Most software
projects have budget and time-to-market. We do not discuss what the roles of these two stakeholder groups
are here (this will be discussed in later chapters) but we do give some guidelines on how they can use and
integrate the software assets from Figure 2 into their work practices.
We first discuss some issues relating to the software architecture in Figure 2 and how it is updated and
modified during the lifetime of the software organisation that supports it. We can set out some goals and
objectives
1. The software architecture is a living organism in the sense that it evolves and improves as new

functionality is added to it. All stakeholders can use it as their reference model.

2. Many of the components in the software architecture are reusable assets in the sense that they can be

used in other applications and not just in the one under discussion. For example, the components for

random number generation and payoff descriptions are certainly reusable software components.

3. The software architecture in Figure 2 – being an instance application of a RAT category – can be used as a

template for other applications in the same category. For example, the current architecture can be

morphed to produce an architecture for a software system to price one-factor options using partial

differential equations (PDE) and the finite difference method (FDM). In general, points 2 and 3 correspond

to “communitywide reuse of architectural assets” as discussed in Bass, Clements and Kazman 1998. In

particular, the Monte Carlo system in an exemplar system as a high-quality demonstration prototype.

4. This point is a follow-on from points 2 and 3. Now we are interested in component-based product lines

representing program families that we create using reusable components and architectures. A product line

is a collection of systems sharing a managed set of features constructed from a common set of core

software assets. These assets include a base architecture and a set of common and possibly tailorable

components that populate it. The feedback loops of the architecture business cycle that feed back to the

organisation reflect the impact on an organisation of having a product line.

Closely related to this discussion is the challenge of estimating the effort (manhours) needed in order to create
new software assets, integrate them into the architecture and deploy them in applications. Determining the
number of hours to create a component can be estimated using the following formula from PERT (Project
Estimation and Review Technique). To use the formula we need three estimates (uncertainty parameters) :

 Parameter aa (most optimistic or shortest time to complete the task).

 Parameter bb (most likely or model time).

 Parameter cc (most pessimistic or longest time).

The values of these parameters should be estimated using a combination of historical data, experience and by
interviewing experts. We model the estimation process by the triangular probability distribution with

23

parameters aa, bb and cc. Finally, a statistical estimate of the expected time is given by the following weighted

average:

T = (a+ 4b + c) =6:T = (a+ 4b + c) =6:

Everyone in the team can use this formula as a rough estimate. It is in any case better than ad-hoc guessing!

12. Advantages and Benefits
Having gone to the effort of designing and implementing a flexible Monte Carlo engine we can ask ourselves
what the advantages are compared to other programming models. A general answer is that the approach in
this chapter based on system decomposition, interfaces and delegates results in software that is easier to
adapt and even reuse than solutions based on the procedural and object-oriented programming models. Some
alternative solutions are:
a) Procedural model (Clewlow and Strickland 1998, Webber 2011): this style basically entails writing the

software by creating a double loop that iterates over the number of simulations (outer loop) and over the

number of time steps to approximate the SDE path (inner loop). The financial logic is implemented inside

the inner loop. The resulting code is inflexible and only suitable for testing models and pricers.

b) Object-oriented model (Duffy and Kienitz 2009, Webber 2011): this is an attempt to adapt the software in

step a). We use the standard modelling techniques such as encapsulation, composition and inheritance to

promote the adaptability of the resulting software system. Maintainability and understandability become

the main challenges with this approach.

These solutions break down when we wish to extend the software to suit new requirements, for example:

 Extending the software to support different kinds of products and models.

 Achieving independence between models, products, market data and model parameters.

 Interoperability with other software and hardware systems.

In order to achieve these ends we need a combination of modern language features (such as interfaces and
delegates) in combination with system architectures and patterns as described in Duffy 2004 and POSA 1996.
In particular, the Layers pattern is widely-used to create virtual machines and an extra level of indirection
between software modules. An example of what we mean (calibration of SDEs) is discussed in exercise 2 of
this chapter.

13. Generalisations and Applications
The architecture in Figure 2 is based on the generic RAT model from Duffy 2004 where we discuss the rationale
for the model and we also give some examples and applications. In the context of computational finance it is
relatively easy to adapt the model to suit other pricing problems, for example, lattice (binomial) and PDE/FDM
models. When commencing on such an analogical reasoning project, the following general issues should be
borne in mind (Polya 1957):

 Understand the problem: what is the output from the system and what is the input?

 Devise a plan: find the connection between the input and output. In the current context, determine how
output is created from input by a collection of loosely-coupled and cohesive subsystems as we saw in
Figure 2. Create the system context diagram and determine what you implement and do not implement.

 Carry out the plan: design and implement the solution in C#. You will not be able to implement all
requirements in one iteration which means that the final solution will be the end product of a series of
prototypes with ever-increasing functionality.

 Looking back: examine the solution and determine if it satisfies the current requirements. Additionally, can
you reuse the design or code in other systems and applications? For example, it might be possible to use
mesh generators, finite difference schemes, random number generators and payoff classes in other
applications.

These work practices demand that you take (and get!) the time to create software as a series of prototypes.
This may not be possible due to organisational and political reasons. A discussion of these issues is outside the
scope of this book.

24

14. Summary and Conclusions
In this chapter we discussed the design and implementation of a software system to price one-factor option
models using the Monte Carlo method. We employed a combination of design techniques that have been
known for more than forty years, the author’s Domain Architectures and modern language features in the .NET
Framework and C#. The role of the object-oriented programming model is of secondary importance, certainly
as a modelling technique to decompose the system into loosely-coupled cohesive components.
We discussed the problem by approaching the problem in a well-defined manner, starting by describing the
financial problem and the closely related mathematical model. We then approximated this model using finite
difference methods. Finally, we implemented these models.
We recommend that you study and do the exercises in this chapter as they include discussions on extending
the UML component diagram in Figure 2 to suit new requirements.

15. Exercises and Projects
1. (Interfaces versus delegates; interfaces with delegates)

In section 4 we discussed how to implement SDEs in C# using the technique that is essentially specialisation
(subtype polymorphism). This is the traditional object-oriented approach. Some of the well-known
disadvantages are:
a) Inflexible and difficult-to-maintain class hierarchies.

b) In some cases we model roles as classes when we should model them as instances of classes to allow run-

time switching.

c) Configuring systems that use classes from class hierarchies adds to complexity.

The problem here is that the coupling between the classes and their methods is hard-wired. In order to add an
extra level of indirection between classes and methods we employ delegates. In this sense we realise that we
have a candidate example of the Bridge pattern. Answer the following questions:
a) Create a class to model an SDE. It has member data for initial condition and expiry. It also implements the

drift and diffusion functions using delegates.

b) What are the advantages of this approach compared with the object-oriented approach in section 4? Do

we need a class hierarchy?

c) Now consider the third solution as show in Figure 3 which can be considered as a hybrid of the object-
oriented solution and the solution in part a) of this exercise. In particular, we implement the drift and
diffusion functions by delegates and the SDE initial condition and expiry by member data in a single class
Sde.

d) What are the advantages of the approach in part c) compared to the object-oriented solution and the
solution in part a) of this exercise?

ISde

Sde Delegate
2

Figure 3 Alternative solution

2. (Calibration of SDEs mini-project)

The SDEs that we discuss in this chapter assume that we have an exact or analytic representation for the drift
and diffusion functions in the SDE. In many cases however, these functions are not known exactly because
they depend on unknown parameters that must be estimated in some way. In this case we write the SDE to
show dependence on a parameter µµ (this is usually an n-dimensional vector):

25

8
<

:

dXt = a(Xt; t; µ)dt+ b(Xt; t; µ)dWt; t ¸ 0

X0 = x0:

8
<

:

dXt = a(Xt; t; µ)dt+ b(Xt; t; µ)dWt; t ¸ 0

X0 = x0:

We assume that initial value x0x0 is deterministic and that x0;x1; : : : ; xnx0;x1; : : : ; xn is a sequence of historical observations

from the above stochastic process that is sampled at the deterministic discrete time-points t0 < t1 < :: : < tnt0 < t1 < :: : < tn.

For example, the one-factor Ornstein-Uhlenbeck (OU) process depends on three unknown parameters ¸; ¹¸; ¹ and

¾¾:

8
>>>>>>>><

>>>>>>>>:

dSt = ¸(¹¡ St)dt + ¾dWt

where

¸ = mean reversion rate

¹ = mean

¾ = volatility:

8
>>>>>>>><

>>>>>>>>:

dSt = ¸(¹¡ St)dt + ¾dWt

where

¸ = mean reversion rate

¹ = mean

¾ = volatility:

The process can be considered as a modification of the random walk in continuous time, or Wiener process, in
which the properties of the process have been changed so that there is a tendency of the walk to move back
towards a central location, with a greater attraction when the process is further away from the centre. The
Ornstein–Uhlenbeck process can also be considered as the continuous-time analogue of the discrete-time
AR(1) process.

We now discuss some techniques to estimate the parameters in these SDEs. There are many techniques, some
of which are:
i) Maximum Likelihood Estimator (MLE) of the unknown parameters can be calculated if the transition

density of the stochastic process is known.

ii) Solve numerically the Kolmogorov partial differential equation satisfied by the transition density when the

transition density is not known.

iii) Least Squares Regression (LSR) in which we use time-series data or simulated data to find the unknown

parameters. For example, for the OU process we assume the AR(1) form:

 Si+1 = aSi + b + " (" is i:i:d:N(0; 1)):Si+1 = aSi + b + " (" is i:i:d:N(0; 1)):

We use a linear least squares algorithm to find the parameters aa and bb which then allow us to determine the

parameters of the process.

Answer the following questions:
a) Determine how to accommodate the new requirement that the drift and diffusion functions can be

computed in different ways. In other words, consider which of the solutions in exercise 1 will allow us to

meet these requirements. In fact, you need to implement the Bridge pattern as shown in Figure 4.

Exact

Sde SdeImpl
1

LSR MLE

Figure 4 Extra level of Indirection

26

b) Update the system context diagram in Figure 2.

c) Implement classes that estimate the parameters in the above SDEs. Test you new code on the OU process

for the Vasicek model using exact simulated data.

d) It may useful to apply the Layers pattern to design and implement this problem. Pay particular attention to

the following steps (as discussed in POSA 1996):

i) The number of layers needed.

ii) The services that a layer delivers to its upper layers.

iii) Specify the interfaces for each layer.

iv) Structure each layer (for example, design the classes that implement each layer).

v) Decouple adjacent layers.

vi) Design an error-handling strategy.

e) Concerning data and control flow between the different layers, determine when you would use a push

model using events or a pull model using methods.

3. (What would we do if we did not have a mediator?)

Discuss the (many) advantages of using the Mediator patterns in your designs.

In particular, answer the following questions:
a) Consider the system architecture in Figure 2 if the mediator component were not present. What are the

consequences for reusability and maintainability?

b) Discuss how the Mediator pattern can help performance by caching data; some computations only need to

be executed once but at the expense of extra memory consumption.

c) The ability to use various mediator classes to suit different needs. Which factory patterns would you use to

create the mediators?

d) Discuss the following advantages and disadvantages of using a mediator:

 It limits subclassing.

 It decouples the participating components.

 It simplifies object protocols.

 It abstracts how objects cooperate.

 It centralises control; mediators can become top-heavy.

4. (Analogous Reasoning: from Monte Carlo Method to PDE Models)

The objective of this extended exercise (it could become a medium-sized software project) is to take an
existing design and implementation of a PDE/FDM model to price one-factor options and adapt it so that its
architecture becomes similar to that in Figure 2. As preparation, you need to know the design rationale for the
architecture in Figure 2 as well as the code base for the model in Figure 5.

27

IBVPFDM

Mesher

<<interface>>

IBSPde

1

1

Pde-BS

Range

1

2

ADE . . .

<<uses>>

Figure 5 Extending the framework: ADE scheme

The assumption is that the model in Figure 2 can be adapted using analogous reasoning to use the software
assets from Figure 5 to design a new PDE/FDM model. These are:

 The software architecture.

 The layering patterns that promote information hiding.

 The components and their interfaces.

 The data and control flow logic in the mediator components.

 The analogies between the mathematics used to model SDEs and PDEs.

Answer the following questions:
a) What is the core process, that is the system output /input and the steps that link them?

b) Find the major components and their responsibilities.

c) Determine the inter-component provides/requires interfaces.

d) Design PDE component using the Layers pattern.

e) Design FDM component using the Layers pattern and possibly the Template Method pattern (hint: find

variant and invariant behaviour between the components that implement various finite difference

schemes).

f) Determine a strategy for designing this system in a series of prototypes. Test each prototype.

g) Use the ideas concerning the use of interfaces and base classes when designing FDM hierarchies for SDEs
to similar hierarchies for PDEs. Concentrate on interface specifications and code reusability. Consider
where the Template Method could be used.

