Tips 12:

\begin{equation}

Newton=\frac{Einstein}{r}

\end{equation}

More precisely for any fundamental particle we have

\begin{equation}

F=G\frac{m_pm_p}{\bar{\lambda}^2}=\frac{mc^2}{\bar{\lambda}}

\end{equation}

where \(\bar{\lambda}\) is the reduced Compton wavelength of the particle m in question and \(m_p\) is the Planck mass. And we have the Einstein Newton ratio (the extended radius of matter (fundamental particles)

\begin{equation}

r=\frac{Einstein}{Newton}

\end{equation}