SERVING THE QUANTITATIVE FINANCE COMMUNITY

 
User avatar
RoniNYC
Topic Author
Posts: 18
Joined: September 6th, 2011, 11:25 pm

What is the probability to toss HH in 10 tosses?

December 30th, 2012, 3:03 am

I know that on average it takes 6 tosses (fair coin) to get 2 heads in a row... Is it possible to find the probability that we toss HH in 10 tosses? Thanks.
 
User avatar
tagoma
Posts: 18351
Joined: February 21st, 2010, 12:58 pm

What is the probability to toss HH in 10 tosses?

December 30th, 2012, 9:01 am

Can we have HHH, HHHH, HHHHH, .... ?Or the probability out of HHTTTTTTTT, THHTTTTTTT, TTHHTTTTTT, ... ?
 
User avatar
karakfa
Posts: 139
Joined: May 25th, 2002, 5:05 pm

What is the probability to toss HH in 10 tosses?

December 31st, 2012, 3:14 pm

Last edited by karakfa on January 1st, 2013, 11:00 pm, edited 1 time in total.
 
User avatar
katastrofa
Posts: 8772
Joined: August 16th, 2007, 5:36 am
Location: Alpha Centauri

What is the probability to toss HH in 10 tosses?

December 31st, 2012, 6:41 pm

where F_n is the Fibbonacci series (F_0 = 0, F_1 = 1, ...).
 
User avatar
Ultraviolet
Posts: 1655
Joined: August 15th, 2012, 9:46 am

What is the probability to toss HH in 10 tosses?

December 31st, 2012, 6:57 pm

QuoteOriginally posted by: katastrofawhere F_n is the Fibbonacci series (F_0 = 0, F_1 = 1, ...).Yup, it has a structure of a Fibonacci sequence: P(n) = 1/2 P(n-1) + 1/2 * 1/2 P(n-2) for n >2, P(2) = 1/4, P(1) = 0+ 50 XP, katastrofa, but you've lost karma for the spelling mistake!
 
User avatar
RoniNYC
Topic Author
Posts: 18
Joined: September 6th, 2011, 11:25 pm

What is the probability to toss HH in 10 tosses?

January 2nd, 2013, 10:55 pm

QuoteOriginally posted by: UltravioletQuoteOriginally posted by: katastrofawhere F_n is the Fibbonacci series (F_0 = 0, F_1 = 1, ...).Yup, it has a structure of a Fibonacci sequence: P(n) = 1/2 P(n-1) + 1/2 * 1/2 P(n-2) for n >2, P(2) = 1/4, P(1) = 0+ 50 XP, katastrofa, but you've lost karma for the spelling mistake!Hey Ultraviolet,Thank you for the answer. Could you please explain why it's a Fibonacci sequence or perhaps direct me to a source so that I understand why it is true?Thanks@edouardI'm not sure, I guess an answer to either would be okay... it's a question I made up after doing a similar question...
 
User avatar
Ultraviolet
Posts: 1655
Joined: August 15th, 2012, 9:46 am

What is the probability to toss HH in 10 tosses?

January 4th, 2013, 7:16 am

Sure (katastrofa must have solved it in a similar way)It's like outrun wrote.You may want to take a look at this thread and the link to the brainteaser forum it contains, where the original problem is solved in a few different ways. In analogy to the solution using conditional expectation values as intermediate steps (to obtain a closed formula for E[n]), we can write a recursive formula for P(n) as a function of P(n-1) and P(n-2) using conditional probabilities:P(n) = 1/2 P(n|T) + 1/2 P(n|H),where P(n|X), X=T,H, is the probability of obtaining HH in n tosses conditioned on the first toss being X.We haveP(n|T) = P(n-1)andP(n|H) = 1/2 P(n|HT) + 1/2 P(n|HH) = 1/2 P(n-2) (obviously, for n > 2 P(n|HH) = 0 and P(n|HT) = P(n-2))Collecting all formulas together, we obtain P(n) = 1/2 P(n-1) + 1/2*1/2 P(n-2).
 
User avatar
ChicagoGuy
Posts: 455
Joined: April 13th, 2007, 1:45 am

What is the probability to toss HH in 10 tosses?

February 3rd, 2013, 2:38 am

I'm not getting that answer. I think this is how you solve it:To get exactly two consecutive heads out of n tosses we have:n=2 tosses: {H, H}n=3 tosses: {H, H, T}, {T, H, H}n=4 tosses: {H, H, T, T}, {T, H, H, T}, {T, T, H, H}and so onSimilarly, to get exactly three consecutive heads out of n tosses we have:n=3 tosses: {H, H, H}n=4 tosses: {H, H, H, T}, {T, H, H, H}n=5 tosses: {H, H, H, T, T}, {T, H, H, H, T}, {T, T, H, H, H}and so onAnd for exactly four consecutive heads out of n tosses we haven=4 tosses: {H, H, H, H}n=5 tosses: {T, H, H, H, H}, {H, H, H, H, T}and so onSo to have 2 consecutive heads out of n tosses we have to add all these up2 tosses: {H, H}3 tosses: {H, H, T}, {T, H, H}, {H, H, H}4 tosses: {H, H, T, T}, {T, H, H, T}, {T, T, H, H}, {H, H, H, T}, {T, H, H, H}, {H, H, H, H}so for 2 tosses: 1/2^23 tosses: (2+1)/2^34 tosses: (3+2+1)/2^4n tosses: (n+(n-1)+...+1)/2^n=(n*(n+1))/2^(n+1)
 
User avatar
horacioaliaga
Posts: 326
Joined: August 21st, 2005, 3:30 pm

What is the probability to toss HH in 10 tosses?

February 5th, 2013, 2:11 pm

The Probability of getting HH on the 10th toss is equal to the probability of not having it (3/4)^9 during the first 9 tosses, times the probability of having it exactly on the 10th toss (1/4):1/4 * (3/4)^9 = 1.8771%
Last edited by horacioaliaga on February 4th, 2013, 11:00 pm, edited 1 time in total.
 
secquant
Posts: 1
Joined: October 21st, 2016, 4:31 pm

Re: What is the probability to toss HH in 10 tosses?

October 21st, 2016, 9:32 pm

Probabilities of getting ...TT... and ...HH... out of 10 are the same, probabilites of getting HTHT...HT or THTH...TH are the same
 
User avatar
FalsePositive
Posts: 93
Joined: March 10th, 2009, 1:12 am

Re: What is the probability to toss HH in 10 tosses?

April 28th, 2017, 2:52 pm

There are N-2+1 = 9 possible 2-streaks where HH can happen with probability 1/4. 
Now we know that 
probability of at least one HH = 1 - probability of no HH = 1 - (3/4)^9 = .92
The chance of getting at least one HH is high because, as you mentioned, on average one HH is expected in every 6 tosses, and now we have 10>6 tosses.  
ABOUT WILMOTT

PW by JB

Wilmott.com has been "Serving the Quantitative Finance Community" since 2001. Continued...


Twitter LinkedIn Instagram

JOBS BOARD

JOBS BOARD

Looking for a quant job, risk, algo trading,...? Browse jobs here...


GZIP: On