SERVING THE QUANTITATIVE FINANCE COMMUNITY

 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

American call on a dividend paying stock

August 4th, 2016, 1:50 pm

I would like to show that American call can be exercised early if the stock pays dividend. So, I have a code to value an American call, what I need to know is how to incorporate the dividend. Most FDM books say dividends are set through V(t+,S)=V(t-,S-d), so basically if I implement it, I do:
1. Assume I have a numerical solution V at the grid node t_i,S_j from solving BS PDE, then I set V_updated(t_i,S_j)=V(t_i,S_j-d_i) at time node t_i if the dividend is paid and set V back to V_updated. If this time point the dividend is not paid, do nothing.
2. And because it is American, after I take V(t_i,S_j)=max(V(t_I,S_j),(S_j-K)^+).
3. Solve the BS pde again
4. Repeat
First question: is that a correct iteration algorithm?
Second question: I was not able to find this algorithm online, all the papers that come up on google consider just changing the drift from r to r-d in BS PDE, but I guess this is for the case of a continuous dividend? Why would they consider that because in reality most stocks pay discrete dividends, am I wrong?
 
User avatar
Cuchulainn
Posts: 62376
Joined: July 16th, 2004, 7:38 am
Location: Amsterdam
Contact:

Re: American call on a dividend paying stock

August 4th, 2016, 2:20 pm

One approach is this
http://www.nccr-finrisk.uzh.ch/media/pdf/ODD.pdf

and the update in Alan's new book (chapter 9 AFAIR).
 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

Re: American call on a dividend paying stock

August 4th, 2016, 7:27 pm

One approach is this
http://www.nccr-finrisk.uzh.ch/media/pdf/ODD.pdf

and the update in Alan's new book (chapter 9 AFAIR).
ok, I looked through the paper and it confirms that my scheme is correct. However, it only considers the call option in details. And clearly If I want to exercise, I better do that right before the dividend. On the other hand, would I use the same algorithm for American puts? The paper just mentions that and the fact that it could be optimal at any point in the lifetime of an option regardless of the dividends. What puts me in doubt is the fact that if I want to exercise, I want to do that right after the dividend is paid, so I get a cheaper stock. In that case, when I roll back my solver, should not I first check for max(intrinsic, value to hold) and then adjust for dividend by the continuity of an option price?
 
User avatar
sladner
Posts: 33
Joined: August 29th, 2011, 3:25 pm

Re: American call on a dividend paying stock

August 9th, 2016, 4:05 pm

early exercise decisions always get back to "what do i give up" versus "what do i get" - in the case of a put, ask yourself in the current interest rate environment what you get
 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

Re: American call on a dividend paying stock

August 9th, 2016, 7:05 pm

One approach is this
http://www.nccr-finrisk.uzh.ch/media/pdf/ODD.pdf

and the update in Alan's new book (chapter 9 AFAIR).
Alan,
can you please comment on puts? In the paper, only calls are considered in details. Puts are only mentioned.
 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

Re: American call on a dividend paying stock

August 9th, 2016, 7:06 pm

early exercise decisions always get back to "what do i give up" versus "what do i get" - in the case of a put, ask yourself in the current interest rate environment what you get
I am using a numerical algorithm to solve this problem and it has to work in any environment.
 
User avatar
Alan
Posts: 10204
Joined: December 19th, 2001, 4:01 am
Location: California
Contact:

Re: American call on a dividend paying stock

August 10th, 2016, 4:11 pm

One approach is this
http://www.nccr-finrisk.uzh.ch/media/pdf/ODD.pdf

and the update in Alan's new book (chapter 9 AFAIR).
Alan,
can you please comment on puts? In the paper, only calls are considered in details. Puts are only mentioned.
As Cuchulainn noted, puts are treated comprehensively in Ch. 9 of "Option Valuation under Stochastic Volatility II" (using the same HHL approach as in the linked paper). Give me a few minutes and I'll post a nice chart.
 
User avatar
Alan
Posts: 10204
Joined: December 19th, 2001, 4:01 am
Location: California
Contact:

Re: American call on a dividend paying stock

August 10th, 2016, 4:34 pm

Image

Here are some nice early exercise boundaries in the [$](t,S)[$] plane for an American put with a discrete dividend at [$]t_D = 0.8[$], option expiration at [$]t = 1[$], and strike price [$]K=100[$]. (The other parameters are [$]r = 0.08[$] and [$]\sigma = 0.40[$]).

The dividend amount paid is the policy [$]\mathcal{D}(S)[$] amount shown above each figure, where [$]S = S(t_D-)[$] is the random stock price (under GBM) immediately before going ex-dividend. The first two rows show the boundary under the Haug, Haug, & Lewis piecewise GBM approach (the linked paper above) with various dividend policy functions. The third row shows the boundary under the escrowed dividend model in the [$](t,\tilde{S})[$] plane, where [$]\tilde{S}[$] is the risky part of the stock price. The chart is from Ch. 9 of the just-mentioned book, where the various chart features are explained.
 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

Re: American call on a dividend paying stock

August 10th, 2016, 5:19 pm

I don't own the book so I can't just lookup that chapter. I referred to the paper because this is something accessible to everyone as of today. And I still did not get my answer, just shown the results. At least from the paper I could see from formula 5 how the model is implemented for calls. All I am asking if the same equation applies to puts but with different payoff function(max(K-S,0)). At first I thought this is the case, but then I started thinking on the fundamental difference between calls and puts on a stock with dividends and if I need to take this into account in my numerical algorithm. 
 
User avatar
Alan
Posts: 10204
Joined: December 19th, 2001, 4:01 am
Location: California
Contact:

Re: American call on a dividend paying stock

August 10th, 2016, 6:48 pm

The modification of your algorithm for calls to make it work for puts is pretty simple.  (I  assume [$]r > 0[$] and no other carry costs besides the discrete dividends).

For calls, it suffices to check for early exercise at [$]t = t_D-[$], instantaneously prior to the ex-date. For puts, you need to check at every date except [$]t = t_D-[$]. Both option types have the same jump condition in the value function as you pass through the ex-date. If you do those things and reproduce the first two rows of figures, you're probably OK. (The book has a good numerical example for a detailed check).
 
User avatar
Kamil90
Topic Author
Posts: 178
Joined: February 15th, 2012, 2:02 pm

Re: American call on a dividend paying stock

August 10th, 2016, 8:11 pm

The modification of your algorithm for calls to make it work for puts is pretty simple.  (I  assume [$]r > 0[$] and no other carry costs besides the discrete dividends).

For calls, it suffices to check for early exercise at [$]t = t_D-[$], instantaneously prior to the ex-date. For puts, you need to check at every date except [$]t = t_D-[$]. Both option types have the same jump condition in the value function as you pass through the ex-date. If you do those things and reproduce the first two rows of figures, you're probably OK. (The book has a good numerical example for a detailed check).
Why would I remove the date when the dividend is paid for a put? Can't I exercise immediately after the dividend is paid at the same point in time?
 
User avatar
Alan
Posts: 10204
Joined: December 19th, 2001, 4:01 am
Location: California
Contact:

Re: American call on a dividend paying stock

August 11th, 2016, 1:13 am

I didn't say "remove the date". At amazon, search inside the book for "Tree approaches" and look at the last result, which will show Table 9.1. If you reproduce that 24.468 value and reproduce the charts I posted here, your code is probably ok and the answer to your last question is 'yes'.
ABOUT WILMOTT

PW by JB

Wilmott.com has been "Serving the Quantitative Finance Community" since 2001. Continued...


Twitter LinkedIn Instagram

JOBS BOARD

JOBS BOARD

Looking for a quant job, risk, algo trading,...? Browse jobs here...


GZIP: On