SERVING THE QUANTITATIVE FINANCE COMMUNITY

 
User avatar
outrun
Posts: 3913
Joined: April 29th, 2016, 1:40 pm

Re: to Black Scholes pricing

October 12th, 2017, 9:21 pm

In the binomial model you don't care about mu: if the stock goes up or down ..your P&L of the hedged call is in both cases zero.

This means that the probability of going up -and hence the value of mu- does not matter if you hedge!
 
User avatar
list1
Topic Author
Posts: 1696
Joined: July 22nd, 2015, 2:12 pm

Re: to Black Scholes pricing

October 12th, 2017, 10:38 pm

outrun wrote:
In the binomial model you don't care about mu: if the stock goes up or down ..your P&L of the hedged call is in both cases zero.

This means that the probability of going up -and hence the value of mu- does not matter if you hedge!

outrun, You right. In BS scheme distributions S up-down are given with the help of explicit parameters (mu, sigma). In binomial scheme distributions up-down are  given directly and all constructions are given with the help of [$]S_{down} ,p_{down} ; S_{up} , p_{up} [$] . Though I think one can try to present value mu and express hedging ration in terms of mu. Though no one need that.  
 
User avatar
list1
Topic Author
Posts: 1696
Joined: July 22nd, 2015, 2:12 pm

Re: to Black Scholes pricing

October 21st, 2017, 3:53 pm

 
User avatar
list1
Topic Author
Posts: 1696
Joined: July 22nd, 2015, 2:12 pm

Re: to Black Scholes pricing

October 23rd, 2017, 2:19 am

list1 wrote:

In this paper
1. informal differential form of the BSE derivation is replaced by its formal integral form
2. it is shown that hedging on a finite time interval represents a pricing problem that does not effect BS pricing
3 it is highlighted the difference between no arbitrage and settlement pricing of the options
and something else.
 
User avatar
frolloos
Posts: 1416
Joined: September 27th, 2007, 5:29 pm
Location: Netherlands

Re: to Black Scholes pricing

October 23rd, 2017, 5:03 pm

3 it is highlighted the difference between no arbitrage and settlement pricing of the options
and something else.


This ("and something else") is a classic :-D
Last edited by frolloos on October 23rd, 2017, 5:05 pm
 
User avatar
list1
Topic Author
Posts: 1696
Joined: July 22nd, 2015, 2:12 pm

Re: to Black Scholes pricing

October 23rd, 2017, 5:18 pm

frolloos wrote:
3 it is highlighted the difference between no arbitrage and settlement pricing of the options
and something else.


This ("and something else") is a classic :-D

Something is related to my point on options pricing, which interprets premium as settlement between buyers and sellers and therefore implies market risk of the premium. Nonstochastic BS premium is implied by oversimplified problem setting that follows from no arbitrage framework of the pricing problem. It will be o'k if we had sufficient conditions that convince us that buyers and sellers always follow the pricing rule which is directed by BS hedged portfolio. 
In particular, when we interpret price as a solution of equality of EPVs of two cash flows buyer and seller  like irs we interpret price as an estimate of settlement price. It looks much better for me than interpret swap price like a portfolio options in BS world.
 
User avatar
Paul
Posts: 7857
Joined: July 20th, 2001, 3:28 pm

Re: to Black Scholes pricing

October 23rd, 2017, 6:33 pm

frolloos wrote:
3 it is highlighted the difference between no arbitrage and settlement pricing of the options
and something else.


This ("and something else") is a classic :-D

Para subir al cielo,
Para subir al cielo se necesita,
Una escalara grande,
Una escelara grande y otra chiquita
 
User avatar
frolloos
Posts: 1416
Joined: September 27th, 2007, 5:29 pm
Location: Netherlands

Re: to Black Scholes pricing

October 23rd, 2017, 6:47 pm

A BS hedging ladder

Image
 
User avatar
list1
Topic Author
Posts: 1696
Joined: July 22nd, 2015, 2:12 pm

Re: to Black Scholes pricing

October 23rd, 2017, 9:29 pm

Paul wrote:
frolloos wrote:
3 it is highlighted the difference between no arbitrage and settlement pricing of the options
and something else.


This ("and something else") is a classic :-D

Para subir al cielo,
Para subir al cielo se necesita,
Una escalara grande,
Una escelara grande y otra chiquita


https://www.youtube.com/watch?v=ULru7RPsPL8
ABOUT WILMOTT

PW by JB

Wilmott.com has been "Serving the Quantitative Finance Community" since 2001. Continued...


JOBS BOARD

JOBS BOARD

Looking for a quant job, risk, algo trading,...? Browse jobs here...