April 14th, 2014, 8:30 pm
I tried on some other data after your input and tried calibrate SABR again with a better result:F0=97,91T=2,4547945Call 96,375 1,72750Call 96,625 1,52250Call 96,875 1,32500Call 97,125 1,13750Call 97,375 0,96250Call 97,625 0,79750Call 97,875 0,64750Call 98,125 0,51500Put 98,75 1,07500Put 98,5 0,92500Put 98,25 0,79000Put 98 0,67250Put 97,75 0,56750Put 97,5 0,47750Now I got with Excels Solver (and beta fixed at 0,5):α 7,2524%β 0,5ρ -0,132076ν 14,2718%The model now perform very well on other strikes too (within 0-2%). Now I face a problem when I take the SABR parameters to a Monte Carlo implementation of the SABR model -- the MC implementation consequently prize way too low?Here is the main implementation I use: For i = 1 To numSim For j = 1 To numPaths rnd1 = Application.NormSInv(Rnd()) rnd2 = Application.NormSInv(Rnd()) alpha(j) = alpha(j - 1) * Exp(-0.5 * ny ^ 2 * dt + ny * Sqr(dt) * rnd1) F(j) = F(j - 1) * Exp(-0.5 * alpha(j - 1) ^ 2 * F(j - 1) ^ (2 * beta - 2) * dt + alpha(j - 1) * F(j - 1) ^ (beta - 1) * (rho * rnd1 + Sqr(1 - rho ^ 2) * rnd2) * Sqr(dt)) Next j 'Payoff for en call option på forward quotes payOff = payOff + Application.Max(F(numPaths) - K, 0) Next i avgpayOff = payOff / numSim call_MC = Exp(-(r * T)) * avgpayOffDo I miss anything here?