June 4th, 2014, 8:08 pm
Just write down the equations:[$] \begin{align*} \mbox{CVA}(t) &= (1-R) \int_t^{t_m}{\mbox{EE}(s) d\mbox{PD}(t,s)}\\ &= (1-R) \int_t^{t_0}{\mbox{EE}(s) d\mbox{PD}(t,s)} + \int_{t_0}^{t_1}{\mbox{EE}(s) d\mbox{PD}(t_0,s)} + ...\\ &= (1-R)\sum_{l=1}^{m} \mbox{EE}_t(t_l) \mathbb{P}_{\tau \in \left[ t_{l-1}, t_{l} \right]}\\\end{align*}[$]If you consider a plain vanilla interest rates swap:[$]\begin{align*}\mbox{CVA}(t) &= (1-R)\sum_{l=1}^{m} \mathbb{E}_t^{\mathbb{Q}} \left[ e^{-\int_t^{t_l}{r(s)ds}} \mbox{IRS}(K)^+ \right] \mathbb{P}_{\tau \in \left[ t_{l-1}, t_{l} \right]}\\ &= (1-R)\sum_{l=1}^{m} P(t,t_l)\mathbb{E}_t^{\mathbb{Q}^{t_l}} \left[ \mbox{IRS}(K)^+ \right] \mathbb{P}_{\tau \in \left[ t_{l-1}, t_{l} \right]}\\ &= (1-R)\sum_{l=1}^{m} P(t,t_l) \mbox{SWAPTION}(t,t_l,K) \mathbb{P}_{\tau \in \left[ t_{l-1}, t_{l} \right]}\end{align*}[$] However, with this method, you cannot capture netting effects occurring at the portfolio level. That is why you want to use a Monte Carlo method.
Last edited by
BenjG on June 3rd, 2014, 10:00 pm, edited 1 time in total.