April 24th, 2015, 9:59 am
Hi,I want to find the sign of [$]\partial_z (\partial_z \log F(T1) - \partial_z \log F(T2) )[$]where [$]T1<T2[$] and[$]F(T) = \int_0^T e^{g(t) + z\, h(t)} dt[$]You can interpret [$]F()[$] as an asset price, [$]T[$] as a maturity and [$]z[$] as a latent factor but it is not really important.All we know is that [$]h(t)>0\forall t[$] and it is either monotone inreasing (m.i.) or decreasing (m.d.).Then I get[$]\frac{\int_0^{T1} e^{g(t) + z\, h(t)}h(t)^2 dt}{\int_0^{T1} e^{g(t) + z\, h(t)}dt} - \left(\frac{\int_0^{T1} e^{g(t) + z\, h(t)}h(t) dt}{\int_0^{T1} e^{g(t) + z\, h(t)} dt}\right)^2 - \frac{\int_0^{T2} e^{g(t) + z\, h(t)}h(t)^2 dt}{\int_0^{T2} e^{g(t) + z\, h(t)}dt} + \left(\frac{\int_0^{T2} e^{g(t) + z\, h(t)}h(t) dt}{\int_0^{T2} e^{g(t) + z\, h(t)} dt}\right)^2[$]Denote the four terms as[$]A1 - A2 - B1 + B2[$]then, [$]A1<B1[$] and [$]B2 > A2[$] if [$]h(t)[$] is m.i.or[$]A1>B1][$] and [$]B2<A2[$] if [$]h(t)[$] is m.d.Is the monotonicity of [$]h(t)[$] helpful to determine the sign of [$]A1-A2[$] and [$]B2-B1[$] and, then, is the condition [$]T2>T1][$] sufficient to determine the whole sign?Could it help to add the assumption that [$]h(t)>1\, \forall t[$] (and m.d.) ? Thanks a lot in advance