March 23rd, 2015, 7:38 pm
Like both Shreve as well as Øksendal.Other than that:* Financial modelling with Jump Processes by Cont & Tankov -- good intro to jumps* Stochastic Integration and Differential Equations by Philip Protter -- this is somewhat in the technical territory, but still think it's the reference to go to learn about semimartingales; if too step, the following notes may help along the way:- Stochastic Calculus Notes by Alan Bain- An essay on the general theory of stochastic processes by Ashkan Nikeghbali- Stochastic Calculus Notes by George LowtherSome alternatives (or complements) to Protter -- haven't had time to examine these more deeply, but parts looked interesting:- Klebaner (2005) "Introduction to Stochastic Calculus with Applications"- Meyer (2001) "Continuous Stochastic Calculus with Applications to Finance"- Bass (2011) "Stochastic Processes"By the way, would anyone happen to have any further thoughts on the above three -- say, how do they compare with the Protter's text?Edit: As for the notes, Almost None of the Theory of Stochastic Processes (a lovely title, incidentally :]) by Cosma Rohilla Shalizi with Aryeh Kontorovich also seem pretty decent -- with Part IV, "Diffusions and Stochastic Calculus," particularly relevant in our context.
Last edited by
Polter on March 22nd, 2015, 11:00 pm, edited 1 time in total.