February 24th, 2019, 7:35 pm
I believe you won't be able to infer much, as sticky-delta versus sticky-strike is defined by the model and market-maker. And this pre-defined sticky-delta/strike is then complicated by the actual market-moves.
Consider, I've calibrated my model to existing market-prices in terms of IV (implied vols).
If I've defined my vol-surface, as ATM-vols and OTM risk-reversals/butterflies; then I make an explicit assumption (usually for stress-tests and delta/vega/gamma hedging) on whether to use sticky-delta, or strike * if * the markets were to move; in the generation of new implied-vol-surface. This is at time, T =0.
Now, at the next time-slice, and markets * have * moved, the new implied vol-surface will reflect the market-consensus of prob.dist at T = 1. If it was purely sticky-delta, the new ATM vol will be at the same level; if it was purely sticky-strike, the new ATM vols will be the level implied at strike K at time T= 0.
But the above never happens. Hence, market vols move in a behaviour where it is a mixture between the sticky-strike and sticky-delta. But it is the market-maker who will know (and have set) their models was from a sticky-strike/delta behaviour.
That's my two cents. It's possible to calibrate out the general ratio (0 to 1) of sticky-strike/delta the market is behaving as; but it is more involved.
Hope that helps!