March 29th, 2006, 9:55 am
Hi DinnerEven under basic BS assumptions the ".5*vol^2*S^2 factor" (coming straight form the BS PDE) only holds if you are reasonably delta- and rho-hedged - which would probably be the case.Now by looking at "modified decay" and "market gamma" (assuming that you're still using BS, but with term-structures and smile) you are introducing a lot more variables in the equation, basically for a given vanilla option, decay depends also on the slope of the term-structures (rates, atm vol, smile) and the assumptions you're making about fwd parameters, on the day of the week (wednesday effect), on the carry cost etc. Gamma depends on the shape of the smile curve, on the functional form that you chose for it (interpolation), and also on the smile dynamics assumptions (what happens to the surface when spot moves : sticky strike, sticky delta, sticky delta + spot/rr correl etc.).So although the opposite gamma/theta rule holds in most cases for one given option, at book level this is not necessarily true. In fact, introducing the term-structure alone (without smile) can cause gamma & theta to have the same sign on a vanilla book. Then to analyse this I guess you'd need to go down at trade level (or to roughly replicate your book with a smaller set of options) and break gamma/theta down by individual impact of each factor : start with BS, then add carry, then term structure, smile etc. to find out which positions are hurting most.