User avatar
Posts: 102
Joined: January 29th, 2007, 5:24 pm

Practical solution for fat-tail risk management?

August 9th, 2013, 5:22 pm

QuoteOriginally posted by: frenchyWillJe vois qu'il y a quelques français par ici (ou du moins des francophones) : nous finirons par conquérir toutes les salles des marchés ...C'était vraiment fabuleux!(...Sorry, could not resist )
Last edited by And2 on August 8th, 2013, 10:00 pm, edited 1 time in total.
User avatar
Posts: 89
Joined: July 14th, 2002, 3:00 am

Practical solution for fat-tail risk management?

August 11th, 2013, 10:14 pm

Hi MizhaelYou may be interested in Why Distributions Matter and;Four Moment Risk DecompositionIn the latter we originally tried and partly succeeded to come up with a 'modified vol' number but the Cornish Fisher expansion cannot model sufficiently high levels of excess skewness and kurtosis to represent extreme / fat tail events. These do seem to be better represented by a Type I Extreme Value distribution viz Gumbel, Pareto or Weibull type distribution with even the skew T not being sufficient. Obviously as all the anti-frequentest / Taleb types point out there is no point in doing any of this unless your sample contains at least a few extreme events. Banks basing their 'stress tests' on the past 12 months of historic data thus not very 'stressful'.Kind regards,Peter Urbani
User avatar
Posts: 49
Joined: February 24th, 2014, 2:57 pm

Practical solution for fat-tail risk management?

September 8th, 2014, 3:55 pm

There is a recent paper about tail risk which i found quite interesting: "Robust and Practical Estimation for Measure of Tail Risk" ... id=2444381
User avatar
Posts: 435
Joined: April 20th, 2008, 5:47 am

Practical solution for fat-tail risk management?

September 10th, 2014, 4:08 am

to answer your question about fat tail dynamics ,you have to assume non-Gaussian governing dynamics for your asset return a Gaussian setting you Normal-VaR is proportional to your SD,i.e Pr[Loss > x] =0.01 @ you are assuming Gaussian dynamics.basel adds a multiplier of [3,4 ] depending on the robustness of your risk management infrastructure.the question is where does the multiplier come from ?if you only assume that the underlying P&L distribution is symmetric then an upper bound on VaR would be applying Jensen Pr [ L > x] <= sigma^2/( 2*x^2).rearranging gives x < = sqrt(1/0.02) * sigma so that the upper bound loss <= 7.07 sigma ,i.e should be less than 7.07 SD ,this is under the assumption of symmetric P&Lso clearly at the 99% under Gaussian assumption we know that the 99% is 2.33 SD ,if you take the ratio of 7.07/2.33 = 3.03 approx ,an that's how you adjust your VaR.

PW by JB has been "Serving the Quantitative Finance Community" since 2001. Continued...

Twitter LinkedIn Instagram



Looking for a quant job, risk, algo trading,...? Browse jobs here...