May 14th, 2008, 2:48 pm
QuoteOriginally posted by: Tapacbif n is even n/2 eigenvalues are 0 and eigenvectors are [1, 0 , 0,..,0, 0, -1], [0, 1, 0,.., 0, -1, 0], [0, 0, 1,.., -1, 0, 0], ...n/2 eigenvalues are 2 and eigenvectors are [1, 0 , 0,..,0, 0, 1], [0, 1, 0,.., 0, 1, 0], [0, 0, 1,.., 1, 0, 0], ... if n is odd then (n-1)/2 eigenvalues are 0, (n-1)/2 eigenvalues are 2 (eigenvectors like in even case). And last eigenvalue is 1 and eigenvector is [0, 0 , ..0, 1, 0..., 0, 0]I got basically the same results:if n is even n/2 eigenvalues are 0 and eigenvectors are [-1, 0 , 0,..,0, 0, 1], [0, -1, 0,.., 0, 1, 0], [0, 0, -1,.., 1, 0, 0], ...n/2 eigenvalues are 2 and eigenvectors are [1, 0 , 0,..,0, 0, 1], [0, 1, 0,.., 0, 1, 0], [0, 0, 1,.., 1, 0, 0], ...if n is odd(n-1)/2 eigenvalues are 0 and eigenvectors are [-1, 0 , 0,..,0, 0, 1], [0, -1, 0,.., 0, 1, 0], [0, 0, -1,.., 1, 0, 0], ...(n-1)/2 eigenvalues are 2 and eigenvectors are [1, 0 , 0,..,0, 0, 1], [0, 1, 0,.., 0, 1, 0], [0, 0, 1,.., 1, 0, 0], ...The last eigenvalue is 1 and eigenvector is [0, 0 , ..0, 1, 0..., 0, 0]