I am trying to understand this:
http://arxiv.org/PS_cache/arxiv/pdf/110 ... 64v1.pdfIn Equation (2) I get G(1) instead of G(0).What is wrong with my working out?% $p_{t+1} = \sum_{t'<t+1}[G(t+1-t')\xi_{t'} + \eta_{t'}] + p_{-\infty}$%% (Take out the final term which is t'=t)%% $= G(t+1-t)\xi_{t} + \eta_{t} + \sum_{t'<t}[G(t+1-t')\xi_{t'} + \eta_{t'}] + p_{-\infty}$%% $= G(1)\xi_{t} + \eta_{t} + \sum_{t'<t}[G(t+1-t')\xi_{t'} + \eta_{t'}] + p_{-\infty}$%% $= G(1)\xi_{t} + \eta_{t} + \sum_{t'<t}[G(l+1)\xi_{t'} + \eta_{t'}] + p_{-\infty}$%% So%% $r_t=p_{t+1}-p_{t} = G(1)\xi_{t} + \eta_{t} + \sum_{t'<t}[G(l+1)\xi_{t'} - G(l)\xi_{t'}]$%% $r_t=p_{t+1}-p_{t} = G(1)\xi_{t} + \eta_{t} + \sum_{t'<t}[\kappa(l)\xi_{t'}]$