December 28th, 2011, 12:09 am
Characteristics of the density and cumulative functions of the log-normal distribution: f(x;mu,sig)=1/(x*sig*sqrt(2*n))*e^((-z^2/2) ), x>0 F(x;mu,sig)= F(z) ,where : z=(log(x)-mu)/sigThen, I should build the conditional log-normal, x0 is the threshold 1 and x are always larger than x0.f(x; mu,sig|x > or equal to x0 )=(f(x; mu,sig))/(1-F(x0; mu,sig)) pour x > or equal to x0 ,f(x; mu,sig|x > or equal to x0 )=(F(x; mu,sig)-F(x0;mu,sig))/(1-F(x0; mu,sig)) for x> or equal to x0 .Afterwards, I should estimate the parameters with the MLE :L(x_i; mu,sig)= SUM (i=1) to n (Log(f(xi; mu,sig))-nLog(1-F(x0; mu,sig) ).How can I perform this test in matlab using these specifications?
Last edited by
Alan696 on December 27th, 2011, 11:00 pm, edited 1 time in total.