February 2nd, 2015, 4:30 pm
The solution can be expressed analytically using higher-order binary options. The usefulness of this is limited though as monthly observations with two years to maturity will yield a solution in terms of a 24-dimensional normal distribution function.See the references that I gave in this post for the background and notation.Let's consider the payoff component only. Let [$]\left( \tau_i \right)_{i = 1}^n[$] be the times-to-maturity at the [$]n[$] monitoring dates with [$]\tau_i < \tau_{i + 1}[$]. For [$]\tau \in \left[ 0, \tau_1 \right)[$], the valuation function is given by[$]\tilde{V}_1(S, \tau) = \mathcal{Q}_K^+(S, \tau) - \mathcal{A}_B^+(S, \tau) + K \mathcal{B}_B^+(S, \tau)[$].For [$]\tau \in \left[ \tau_1, \tau_2 \right)[$] the option value [$]\tilde{V}_2(S, \tau)[$] satisfies the initial value problem[$]\mathcal{L} \left\{ \tilde{V}_2 \right\} (S, \tau) = 0 \qquad \text{for } (S, \tau) \in \mathbb{R}_+ \times \left[ \tau_1, \tau_2 \right)[$],[$]\tilde{V}_2 \left( S, \tau_1 \right) = \tilde{V}_1 \left( S, \tau_1 \right) \mathrm{1} \{ S < B \}[$].The solution is given by[$]\tilde{V}_2(S, \tau) = \mathcal{Q}_{B K}^{- +} (S, \tau) - \mathcal{A}_{B B}^{- +} (S, \tau) + K \mathcal{B}_{B B}^{- +}(S, \tau)[$].Now continue applying this recursively.